×

Optimal estimator design for LTI systems with bounded noises, disturbances, and nonlinearities. (English) Zbl 1508.93104

Summary: This paper presents a new estimation technique for linear time-invariant (LTI) systems with bounded additional nonlinearities and/or disturbances, measurement noises, and initial states. A new direct methodology is developed to design an estimator optimizing the maximum estimation error of the system state or its linear function in a prefixed time interval. For some mechanical systems, both the parameters of the optimal estimator and the related maximum estimation error in a closed form are provided. The proposed method is illustrated through four simulation and experimental examples.

MSC:

93B51 Design techniques (robust design, computer-aided design, etc.)
93C10 Nonlinear systems in control theory
93D40 Finite-time stability
Full Text: DOI

References:

[1] Anderson, BDO; Moore, JB, Optimal Filtering (1979), Englewood Cliffs, NJ: Prentice Hall, Englewood Cliffs, NJ · Zbl 0688.93058
[2] Basar, T., Optimum performance levels for minimax filters, predictors and smoothers, Syst. Control Lett., 16, 309-317 (1991) · Zbl 0729.93077 · doi:10.1016/0167-6911(91)90052-G
[3] M.V. Basin, New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems, Lecture Notes in Control and Information Sciences, Springer, Berlin Heidelberg, 2008 · Zbl 1160.93001
[4] Basin, MV; Shi, P., New trends in optimal and robust filtering for stochastic systems, Circuits Syst. Signal Process, 28, 185-189 (2009) · Zbl 1171.93302 · doi:10.1007/s00034-008-9076-1
[5] Capozzoli, A.; Celentano, L.; Curcio, C.; Liseno, A.; Savarese, S., Optimized trajectory tracking of a class of uncertain systems applied to optimized raster scanning in near-field measurements, IEEE Access, 6, 8666-8681 (2018) · doi:10.1109/ACCESS.2018.2802638
[6] Celentano, L., Design of a pseudo-PD or PI robust controller to track C2 trajectories for a class of uncertain nonlinear MIMO System, J. Franklin Instit., 354, 12, 5026-5055 (2017) · Zbl 1367.93455 · doi:10.1016/j.jfranklin.2017.05.019
[7] Celentano, L., Pseudo-PID robust tracking design method for a significant class of uncertain MIMO systems, IFAC-Papers Line, 50, 1, 1545-1552 (2017) · doi:10.1016/j.ifacol.2017.08.307
[8] Celentano, L.; Basin, M., New results on robust stability analysis and synthesis for MIMO uncertain systems, IET Control Theory Appl., 12, 10, 1421-1430 (2018) · doi:10.1049/iet-cta.2018.0101
[9] Celentano, L.; Iervolino, R., Trajectory tracking of a class of uncertain systems applied to vehicle platooning and antenna scanning systems, Int. J. Syst. Sci., 49, 15, 3231-3246 (2018) · Zbl 1482.93147 · doi:10.1080/00207721.2018.1535676
[10] L. Celentano, M. Basin, “Comprehensive approach to design robust tracking controllers for mechatronic processes,” IEEE SMC 2019 International Conference on Systems, Man, and Cybernetics, October 6-9, Bari, Italy, 2019
[11] Celentano, L.; Basin, M., An approach to design robust tracking controllers for nonlinear uncertain systems, IEEE Trans. Syst. Man Cybern. Syst., 50, 8, 3010-3023 (2020) · doi:10.1109/TSMC.2018.2834908
[12] Chen, B.; Yu, L.; Zhang, W-A, H∞ filtering for markovian switching genetic regulatory networks with time-delays and stochastic disturbances, Circuits Syst. Signal Process, 30, 1231-1252 (2011) · Zbl 1238.93107 · doi:10.1007/s00034-011-9274-0
[13] Chen, W-H, Disturbance observer-based control for nonlinear systems, IEEE/ASME Trans. Mechatr., 9, 4, 706-710 (2004) · doi:10.1109/TMECH.2004.839034
[14] De Oliveira, MC; Geromel, JC, H2 and H∞ filtering design subject to implementation uncertainty, Siam J. Control Optim., 44, 2, 515-530 (2005) · Zbl 1210.93076 · doi:10.1137/S0363012903424721
[15] Dong, H.; Wang, Z.; Ding, SX; Gao, H., On H∞ estimation of randomly occurring faults for a class of nonlinear time-varying systems with fading channels, IEEE Trans. Autom. Control, 61, 2, 479-484 (2016) · Zbl 1359.93464 · doi:10.1109/TAC.2015.2437526
[16] Farza, M.; M’Saad, M.; Fall, ML; Pigeon, E.; Gehan, O.; Busawon, K., Continuous-discrete time observers for a class of MIMO nonlinear systems, IEEE Trans. Autom. Contr., 59, 4, 1060-1065 (2014) · Zbl 1360.93123 · doi:10.1109/TAC.2013.2283754
[17] Fridman, E.; Shaked, U., “A descriptor system approach to H∞ control of linear time-delay systems, IEEE Trans. Automat. Contr., 47, 253-270 (2002) · Zbl 1364.93209 · doi:10.1109/9.983353
[18] E. Fridman, U. Shaked, and L. Xie, “Robust H2 filtering of linear systems with time delays,” in Proc. 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, pp. 3877-3882, 2002
[19] Geromel, JC, Optimal linear filtering under parameter uncertainty, IEEE Trans. Signal Processing, 47, 168-175 (1999) · Zbl 0988.93082 · doi:10.1109/78.738249
[20] Geromel, JC; Bernussou, J.; Garcia, G.; de Oliveira, MC, H_2 and H_∞ robust filtering for discrete-time linear systems, SIAM J. Control Optim., 38, 1353-1368 (2000) · Zbl 0958.93091 · doi:10.1137/S0363012997327379
[21] Gevers, M.; Li, G., Parametrizations in Control, Estimation and Filtering Problems (1993), London: Springer, London · Zbl 0929.93002 · doi:10.1007/978-1-4471-2039-1
[22] Gong, W.; Li, H.; Zhao, D., An improved denoising model based on the analysis K-SVD algorithm, Circuits Syst. Signal Process, 36, 4006-4021 (2017) · doi:10.1007/s00034-017-0496-7
[23] F. Han, H. Dong, N. Hou, and X. Bu, “Tobit Kalman filtering: conditional expectation approach,” 2017 Chinese Automation Congress, Jinan, China, pp. 928-932, 2017
[24] Hassibi, B.; Sayed, AH; Kailath, T., H∞ optimality of the LMS algorithm, IEEE Trans. Signal Process., 44, 2, 267-280 (1996) · doi:10.1109/78.485923
[25] Hassibi, B.; Sayed, AH; Kailath, T., Linear estimation in Krein spaces. Part I: theory, IEEE Trans. Autom. Control, 41, 1, 18-33 (1996) · Zbl 0862.93055 · doi:10.1109/9.481605
[26] Horst, R.; Tuy, H., Global Optimization: Deterministic Approaches (2003), Berlin: Springer, Berlin · Zbl 0704.90057
[27] Hsieh, C-S; Chen, F-C, General two-stage Kalman filters, IEEE Trans. Autom. Control, 45, 4, 819-824 (2000) · Zbl 0973.93052 · doi:10.1109/9.847129
[28] R.E. Kalman, “On the general theory of control systems,” in Proc. of the First IFAC World Congress, Butterworth Scientific Publications, 1960
[29] D. Luenberger, Observing the state of a linear system. IEEE Trans. Military Electronics MIL-8, 74-80 (1964)
[30] Mazenc, F.; Bernard, O., Interval observers for linear time-invariant systems with disturbances, Automatica, 47, 1, 140-147 (2011) · Zbl 1209.93024 · doi:10.1016/j.automatica.2010.10.019
[31] Milanese, M.; Ruiz, F.; Taragna, M., Direct data-driven filter design for uncertain LTI systems with bounded noise, Automatica, 46, 1773-1784 (2010) · Zbl 1218.93102 · doi:10.1016/j.automatica.2010.07.006
[32] Mintz, M., A Kalman filter as minimax estimator, J. Opt. Theory Appl., 9, 99-111 (1972) · Zbl 0215.54804 · doi:10.1007/BF00932347
[33] F.O. Ruiz Palacios, “New approaches to optimal filter design,” Ph.D. dissertation, Course in Information and Systems Engineering, Polytechnic University of Turin, Turin, Italy, 2009
[34] Shi, P.; Karan, M.; Kaya, CY, Robust Kalman filter design for markovian jump linear systems with norm-bounded unknown nonlinearities, Circuits Syst. Signal Process, 24, 2, 135-150 (2005) · Zbl 1136.93450 · doi:10.1007/s00034-004-0702-2
[35] Su, Y.; Müller, PC; Zheng, C., A simple nonlinear observer for a class of uncertain mechanical systems, IEEE Trans. Autom. Control, 52, 7, 1340-1345 (2007) · Zbl 1366.93082 · doi:10.1109/TAC.2007.900851
[36] Sundaram, S.; Hadjicosti, CN, Delayed observers for linear systems with unknown inputs, IEEE Trans. Autom. Control, 52, 2, 334-339 (2007) · Zbl 1366.93644 · doi:10.1109/TAC.2006.890371
[37] Talebi, SP; Werner, S., Distributed Kalman filtering in presence of unknown outer network actuations, IEEE Control Syst. Lett., 3, 1, 186-191 (2019) · doi:10.1109/LCSYS.2018.2868893
[38] Wang, Z.; Zhou, W., Robust linear filter with parameter estimation under student-t measurement distribution, Circuits Syst Signal Process, 38, 2445-2470 (2019) · doi:10.1007/s00034-018-0972-8
[39] Wang, Z.; Shen, Y.; Zhang, X., Observer design for discrete-time descriptor systems: an LMI approach, Syst. Control Lett., 61, 6, 683-687 (2012) · Zbl 1250.93038 · doi:10.1016/j.sysconle.2012.03.006
[40] I. Yaesh and U. Shaked, “Game theory approach to optimal linear estimation in the minimum H∞-norm sense,” in Proc. 28th Conference on Decision and Control, Tampa, Florida, pp. 421-425, 1989
[41] Yang, R.; Shi, P.; Liu, G-P, Filtering for discrete-time networked nonlinear systems with mixed random delays and packet dropouts, IEEE Trans. Autom. Control, 56, 11, 2655-2660 (2011) · Zbl 1368.93734 · doi:10.1109/TAC.2011.2166729
[42] Yang, R.; Zheng, WX, H∞ filtering for discrete-time 2-D switched systems: an extended average dwell time approach, Automatica, 98, 302-313 (2018) · Zbl 1406.93352 · doi:10.1016/j.automatica.2018.09.013
[43] Zhou, Q.; Chen, B.; Li, H.; Lin, C., Delay-range-dependent L2-L∞ filtering for stochastic systems with time-varying interval delay, Circuits Syst Signal Process, 28, 331-348 (2009) · Zbl 1171.93397 · doi:10.1007/s00034-008-9078-z
[44] Zhu, Y.; Zheng, WX; Zhou, D., Quasi-synchronization of discrete-time Lur’e-type switched systems with parameter mismatches and relaxed PDT constraints, IEEE Trans Cybern, 50, 5, 2026-2037 (2020) · doi:10.1109/TCYB.2019.2930945
[45] Zhu, Y.; Zheng, WX, Multiple Lyapunov functions analysis approach for discrete-time switched piecewise-affine systems under dwell-time constraints, IEEE Trans. Autom. Control, 65, 5, 2177-2184 (2020) · Zbl 1533.93669 · doi:10.1109/TAC.2019.2938302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.