×

Bifurcations analysis of a multiple attractors energy harvesting system with fractional derivative damping under random excitation. (English) Zbl 1508.74030

Summary: The multiple attractors energy harvester, which can convert mechanical energy into electrical energy, is a typical birhythmic system. This paper investigates the stochastic bifurcation of the system with fractional derivative damping under different noise excitations. Variable transformation and conversion mechanism for decoupling the electromechanical equations are utilized to obtain the approximate equivalent system. Probability density functions of the system are generated via the stochastic averaging method. Numerical results are presented to verify the effectiveness of the method. In the deterministic case, the fractional order can effectively control the birhythmic properties. In the stochastic case, the effects of fractional derivative damping and different noises on the stochastic P-bifurcations of the system are discussed separately. It concludes that appropriately changing noise parameters and fractional derivative parameters can increase the harvested energy from vibrations. This study highlights the theoretical contribution in energy harvesting and hopes to provides ideas for optimizing the energy harvesting performance.

MSC:

74H50 Random vibrations in dynamical problems in solid mechanics
74H60 Dynamical bifurcation of solutions to dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74F15 Electromagnetic effects in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
74S40 Applications of fractional calculus in solid mechanics
Full Text: DOI

References:

[1] Williams, C.; Yates, R. B., Analysis of a micro-electric generator for microsystems, Sensors Actuators A, 52, 1, 8-11 (1996)
[2] Saadon, S.; Sidek, O., A review of vibration-based MEMS piezoelectric energy harvesters, Energy Convers Manage, 52, 1, 500-504 (2011)
[3] Glynne-Jones, P.; Tudor, M. J.; P., B. S.; White, N. M., An electromagnetic, vibration-powered generator for intelligent sensor systems, Sensors Actuators A, 110, 1, 344-349 (2004)
[4] Tvedt, L. G.W.; Nguyen, D. S.; Halvorsen, E., Nonlinear behavior of an electrostatic energy harvester under wide and narrowband excitation, J Microelectromech Syst, 19, 2, 305-316 (2010)
[5] Tang, L. H.; Yang, Y. W., Analysis of synchronized charge extraction for piezoelectric energy harvesting, Smart Mater Struct, 20, 8, 15 (2011)
[6] Erturk, A.; Inman, D. J., A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters, J Vib Acoust, 130, 1-15 (2008)
[7] Jin, X.; Wang, Y.; Xu, M.; Huang, Z., Semi-analytical solution of random response for nonlinear vibration energy harvesters, J Sound Vib, 340, 267-282 (2015)
[8] Zhou, S.; Zuo, L., Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting, Commun Nonlinear Sci Numer Simul, 61, 271-284 (2018) · Zbl 1473.70046
[9] Daqaq, M. F.; Masana, R.; Erturk, A.; Quinn, D. D., On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion, Appl Mech Rev, 66, 4, Article 040801 pp. (2014)
[10] Cottone, F.; Vocca, H.; Gammaitoni, L., Nonlinear energy harvesting, Phys Rev Lett, 102, 8, Article 080601 pp. (2009)
[11] Ramlan, R.; Brennan, M. J.; Mace, B. R.; Kovacic, I., Potential benefits of a non-linear stiffness in an energy harvesting device, Nonlinear Dynam, 59, 4, 545-558 (2010) · Zbl 1189.70106
[12] Erturk, A.; Inman, D. J., Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling, J Sound Vib, 330, 10, 2339-2353 (2011)
[13] Wei, C.; Zhang, K.; Hu, C.; Wang, Y.; Taghavifar, H.; Jing, X., A tunable nonlinear vibrational energy harvesting system with scissor-like structure, Mech Syst Signal Process, 125, 202-214 (2019)
[14] Loong, C. N.; Chang, C. C., Performance of a nonlinear electromagnetic energy harvester-structure system under random excitation, J Eng Mech, 146, 9, Article 04020098 pp. (2020)
[15] Barrero-Gil, A.; Sanz-Andres, A.; Alonso, G., Hysteresis in transverse galloping: The role of the inflection points, J Fluids Struct, 25, 6, 1007-1020 (2009)
[16] Barrero-Gil, A.; Sanz-Andres, A.; Roura, M., Transverse galloping at low reynolds numbers, J Fluids Struct, 25, 7, 1236-1242 (2009)
[17] Barrero-Gil, A.; Alonso, G.; Sanz-Andres, A., Energy harvesting from transverse galloping, J Sound Vib, 329, 14, 2873-2883 (2010)
[18] Kwuimy, C. A.K.; Nataraj, C., Recurrence and joint recurrence analysis of multiple attractors energy harvesting system, (Structural nonlinear dynamics and diagnosis, Vol. 168 (2015)), 97-123
[19] Biswas, D.; Banerjee, T.; Kurths, J., Control of birhythmicity: A self-feedback approach, Chaos Solitons Fractals, 27, 6, Article 063110 pp. (2017) · Zbl 1390.92016
[20] Guo, Q.; Sun, Z. K.; Zhang, Y.; Xu, W., Time-delayed feedback control in the multiple attractors wind-induced vibration energy harvesting system, Complexity, 1-11 (2019)
[21] Zhang, W. T.; Xu, W.; Su, M., Response of a stochastic multiple attractors wind-induced vibration energy harvesting system with impacts, Int J Non-Linear Mech, 138, Article 103853 pp. (2022)
[22] Xu, Y.; Gu, R. C.; Zhang, H. Q.; Xu, W.; Duan, J. Q., Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise, Phys Rev E, 83, 5, Article 056215 pp. (2011)
[23] Zhang, X. Y.; Xu, Y.; Liu, Q. J.; Kurths, J.; Grebogi, C., Rate-dependent bifurcation dodging in a thermoacoustic system driven by colored noise, Nonlinear Dynam, 104, 2733-2743 (2021)
[24] Bonciolini, G.; Noiray, N., Bifurcation dodge: avoidance of a thermoacoustic instability under transient operation, Nonlinear Dynam, 96, 1, 703-716 (2019) · Zbl 1437.37063
[25] Borowiec, M.; Litak, G.; Friswell, M. I.; Ail, S. F.; Adhikari, S.; Lees, A. W.; Bilgen, O., Energy harvesting in piezoelastic systems driven by random excitations, Int J Struct Stab Dyn, 13, 7, 1-11 (2013)
[26] Jiang, W. A.; Chen, L. Q., An equivalent linearization technique for nonlinear piezoelectric energy harvesters under Gaussian white noise, Commun Nonlinear Sci Numer Simul, 19, 8, 2897-2904 (2014)
[27] Fokou, I. S.; Buckjohn, C. N.; Siewe, M. S.; Tchawoua, C., Probabilistic distribution and stochastic P-bifurcation of a hybrid energy harvester under colored noise, Commun Nonlinear Sci Numer Simul, 56, 177-197 (2018)
[28] Zhou, S.; Yu, T. J., Performance comparisons of piezoelectric energy harvesters under different stochastic noises, AIP Adv, 10, 3, Article 035033 pp. (2020)
[29] Yang, Y. G.; Sun, Y. H.; Xu, W., Bifurcation analysis of an energy harvesting system with fractional order damping driven by colored noise, Int J Bifurcation Chaos, 31, 15, Article 2150223 pp. (2021) · Zbl 1484.34123
[30] Litak, G.; Friswell, M. I.; Adhikari, S., Magnetopiezoelastic energy harvesting driven by random excitations, Appl Phys Lett, 96, 21, Article 214103 pp. (2010)
[31] Halvorsen, E., Fundamental issues in nonlinear wideband-vibration energy harvesting, Phys Rev E, 87, 4, Article 042129 pp. (2013)
[32] Zhao, S.; Erturk, A., On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system, Appl Phys Lett, 102, 10, Article 103902 pp. (2013)
[33] Daqaq, M. F., Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise, J Sound Vib, 330, 11, 2554-2564 (2011)
[34] Fezeu, G. J.; Fokou, I. S.M.; Buckjohn, C. N.D.; Siewe, M. S.; Tchawoua, C., Probabilistic analysis and ghost-stochastic resonance of a hybrid energy harvester under Gaussian White noise, Meccanica, 55, 2, 13 (2020) · Zbl 07531567
[35] Fezeu, G. J.; Fokou, I. S.M.; Buckjohn, C. N.D.; Siewe, M. S.; Tchawoua, C., Resistance induced P-bifurcation and Ghost-Stochastic resonance of a hybrid energy harvester under colored noise, Physica A, 557, 16 (2020) · Zbl 07531567
[36] Leung, A.; Guo, Z., Forward residue harmonic balance for autonomous and non-autonomous systems with fractional derivative damping, Commun Nonlinear Sci Numer Simul, 16, 2169-2183 (2011) · Zbl 1221.34014
[37] Ngueuteu, G. M.; Woafo, P., Dynamics and synchronization analysis of coupled fractional-order nonlinear electromechanical systems, Mech Res Commun, 46, 20-25 (2012)
[38] Gemant, A., On fractional differentials, Philos Mag Ser, 25, 540-549 (1938) · JFM 64.0401.02
[39] Bagley, R. L.; Torvik, P. J., Fractional calculus in the transient analysis of viscoelastically damped structures, AIAA J, 23, 918-925 (1985) · Zbl 0562.73071
[40] Koeller, R. C., Application of fractional calculus to the theory of viscoelasticity, ASME J Appl Mech, 51, 299-307 (1984) · Zbl 0544.73052
[41] Rossikhin, Y. A.; Shitikova, M. V., Analysis of rheological equations involving more than one fractional parameters by the use of the simplest mechanical systems based on these equations, Mech Time-Depend Mater, 5, 2, 131-175 (2001)
[42] Padovan, J.; Sawicki, J. T., Nonlinear vibrations of fractionally damped systems, Nonlinear Dynam, 16, 4, 321-336 (1998) · Zbl 0929.70017
[43] Seredynska, M.; Hanyga, A., Nonlinear differential equations with fractional damping with applications to the 1dof and 2dof pendulum, Acta Mech, 176, 3, 169-183 (2005) · Zbl 1069.70012
[44] Rossikhin, Y. A.; Shitikova, M. V., Nonlinear free damped vibrations of suspension bridges with uncertain fractional damping, Apii Jesa J Eur Syst Autom, 42, 6, 879 (2008)
[45] Huang, Z. L.; Jin, X. L., Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative, J Sound Vib, 319, 1121-1135 (2009)
[46] Spanos, P. D.; Evangelatos, G. I., Response of a non-linear system with restoring forces governed by fractional derivatives—time domain simulation and statistical linearization solution, Soil Dyn Earthq Eng, 30, 811-821 (2010)
[47] Syta, A.; Litak, G.; Lenci, S.; Scheffler, M., Chaotic vibrations of the Duffing system with fractional damping, Chaos, 24, 1, Article 013107 pp. (2014) · Zbl 1374.34121
[48] Cao, J.; Zhou, S.; Inman, D. J.; Chen, Y., Chaos in the fractionally damped broadband piezoelectric energy generator, Nonlinear Dynam, 80, 4, 1705-1719 (2015)
[49] Kwuimy, C. A.K.; Nataraj, C.; Litak, G., Enhancing energy harvesting system using materials with fractional order stiffness, (Proceeding of the ASME dynamic systems and control conference. Palo Alto (2013)), 21-23
[50] Kwuimy, C. A.K.; Litak, G.; Nataraj, C., Nonlinear analysis of energy harvesting systems with fractional order physical properties, Nonlinear Dynam, 80, 1, 491-501 (2015)
[51] Kwuimy, C. A.K.; Litak, G., Enhance limit cycle oscillation in a wind flow energy harvester system with fractional order derivatives, Theor Appl Mech Lett, 4, 5, Article 053001 pp. (2014)
[52] Kwuimy, C. A.K.; Woafo, P., Dynamics, chaos and synchronization of self-sustained electromechanical systems with clamped-free flexible arm, Nonlinear Dynam, 53, 3, 201-213 (2008) · Zbl 1170.74349
[53] Guo, Q.; Sun, Z. K.; Xu, W., Delay-induced transitions in the birhythmic biological model under joint noise sources, Physica A, 525, 337-348 (2019) · Zbl 07565784
[54] Chen, L. C.; Wang, W. H.; Li, Z. S.; Zhu, W. Q., Stationary response of Duffing oscillator with hardening stiffness and fractional derivative, Int J Non-Linear Mech, 48, 44-50 (2012)
[55] Yang, Y. G.; Xu, W.; Gu, X. D.; Sun, Y. H., Stationary response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white noise, Chaos Solitons Fractals, 77, 190-204 (2015) · Zbl 1353.34102
[56] Xu, M.; Jin, X. L.; Wang, Y.; Huang, Z. L., Stochastic averaging for nonlinear vibration energy harvesting system, Nonlinear Dynam, 78, 1451-1459 (2014)
[57] Lin, Y. K.; Cai, G. Q., Probabilistic structural dynamics: Advanced theory and application (1995), McGraw-Hill: McGraw-Hill New York
[58] Gaudreault, M.; Drolet, F.; Vinals, J., Bifurcation threshold of the delayed van der Pol oscillator under stochastic modulation, Phys Rev E, 85, 5, Article 056214 pp. (2012)
[59] Chen, L. C.; Jiang, W. A., Internal resonance energy harvesting, J Appl Mech-Trans Asme, 82, Article 031004 pp. (2015)
[60] Jiang, W. A.; Chen, L. C., Stochastic averaging of energy harvesting systems, Int J Non-Linear Mech, 85, 174-187 (2016)
[61] Zhu, W. Q.; Huang, Z. L.; Suzuki, Y., Response and stability of strongly non-linear oscillators under wide-band random excitation, Int J Non-Linear Mech, 36, 8, 1235-1250 (2001) · Zbl 1258.70037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.