×

An adaptive model order reduction method for boundary element-based multi-frequency acoustic wave problems. (English) Zbl 1506.74470

Summary: The classical boundary element method (BEM) is widely used to obtain detailed information on the acoustic performance of large-scale dynamical systems due to the nature of semi-analytical characteristic. Its use, however, results in asymmetric and dense system matrix, which makes original full-order model evaluation very time consuming and memory demanding. Moreover, the frequency sweep analysis which is indispensable for the assessment of noise emission levels and the design of high-quality products requires the repetitive assembly and solution of system of equations, which further increases the computational complexity. In order to alleviate these problems, an adaptive structure-preserving model order reduction method is presented, which is based on an offline-online solution framework. In the offline phase, we first factor out the frequency term as a scalar function from the BE integral kernels of the Burton-Miller formulation, followed by integration to set up the system matrices. A global frequency-independent orthonormal basis is then constructed via the second-order Arnoldi (SOAR) method to span a projection subspace, onto which the frequency-decoupled system matrices are projected column by column to solve the memory problem arising from the frequency-related decomposition. In addition, the number of iterations required for convergence can be automatically determined by exploiting the condition number of an upper Hessenberg matrix in SOAR. In the online stage, a reliable reduced-order model can be quickly recovered by the sum of those offline stored reduced matrices multiplied by frequency-dependent coefficients, which is favored in many-query applications. Two academic benchmarks and a more realistic problem are investigated in order to demonstrate the potentials of the proposed approach.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
65N99 Numerical methods for partial differential equations, boundary value problems
74H45 Vibrations in dynamical problems in solid mechanics

Software:

FEAPpv; SOAR
Full Text: DOI

References:

[1] Zienkiewicz, O.; Taylor, R.; Zhu, J., Finite element method - its basis and fundamentals, (Zienkiewicz, O.; Taylor, R.; Zhu, J., Elservier (2005), Elsevier: Elsevier London), 1-749
[2] Brebbia, C. A., The Boundary Element Method for Engineers, 1-189 (1978), Pentech Press · Zbl 0414.65060
[3] Schenck, H. A., Improved integral formulation for acoustic radiation problems, J. Acoust. Soc. Am., 44, 1, 41-58 (1968) · Zbl 0187.50302
[4] Burton, A. J.; Miller, G. F., The application of integral equation methods to the numerical solution of some exterior boundary-value problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 323, 1553, 201-210 (1971) · Zbl 0235.65080
[5] Amini, S.; Harris, P. J., A comparison between various boundary integral formulations of the exterior acoustic problem, Comput. Methods Appl. Mech. Engrg., 84, 1, 59-75 (1990) · Zbl 0716.76054
[6] Liu, Y. J., On the BEM for acoustic wave problems, Eng. Anal. Bound. Elem., 107, 53-62 (2019) · Zbl 1464.76096
[7] Nishimura, N., Fast multipole accelerated boundary integral equation methods, Appl. Mech. Rev., 55, 4, 299-324 (2002)
[8] Liu, Y. J., Fast Multipole Boundary Element Method: Theory and Applications in Engineering, 1-235 (2009), Cambridge University Press
[9] Kamiya, N.; Andoh, E.; Nogae, K., Eigenvalue analysis by the boundary element method: new developments, Eng. Anal. Bound. Elem., 12, 3, 151-162 (1993)
[10] Ali, A.; Rajakumar, C.; Yunus, S. M., Advances in acoustic eigenvalue analysis using boundary element method, Comput. Struct., 56, 5, 837-847 (1995) · Zbl 1002.76539
[11] Zheng, C. J.; Gao, H. F.; Du, L.; Chen, H. B.; Zhang, C., An accurate and efficient acoustic eigensolver based on a fast multipole BEM and a contour integral method, J. Comput. Phys., 305, 677-699 (2016) · Zbl 1349.76421
[12] Xiao, J.; Meng, S.; Zhang, C.; Zheng, C., Resolvent sampling based Rayleigh-Ritz method for large-scale nonlinear eigenvalue problems, Comput. Methods Appl. Mech. Engrg., 310, 33-57 (2016) · Zbl 1439.65141
[13] Li, S., An efficient technique for multi-frequency acoustic analysis by boundary element method, J. Sound Vib., 283, 3-5, 971-980 (2005)
[14] Wang, Z.; Zhao, Z. G.; Liu, Z. X.; Huang, Q. B., A method for multi-frequency calculation of boundary integral equation in acoustics based on series expansion, Appl. Acoust., 70, 3, 459-468 (2009)
[15] Zhang, Q.; Mao, Y.; Qi, D.; Gu, Y., An improved series expansion method to accelerate the multi-frequency acoustic radiation prediction, J. Comput. Acoust., 23, 1 (2015) · Zbl 1360.76179
[16] Shi, Y.; Chen, X.; Tan, Y.; Jiang, H.; Liu, S., Reduced-basis boundary element method for fast electromagnetic field computation, J. Opt. Soc. Amer. A, 34, 12, 2231-2242 (2017)
[17] Hetmaniuk, U.; Tezaur, R.; Farhat, C., Review and assessment of interpolatory model order reduction methods for frequency response structural dynamics and acoustics problems, Int. J. Numer. Methods Eng., 90, 13, 1636-1662 (2012) · Zbl 1246.74023
[18] Raveendra, S. T., An efficient indirect boundary element technique for multi-frequency acoustic analysis, Internat. J. Numer. Methods Engrg., 44, 1, 59-76 (1999) · Zbl 0924.76073
[19] Von Estorff, O.; Zaleski, O., Efficient acoustic calculations by the BEM and frequency interpolated transfer functions, Eng. Anal. Bound. Elem., 27, 7, 683-694 (2003) · Zbl 1060.76612
[20] Lefteriu, S.; Souza Lenzi, M.; Bériot, H.; Tournour, M.; Desmet, W., Fast frequency sweep method for indirect boundary element models arising in acoustics, Eng. Anal. Bound. Elem., 69, 32-45 (2016) · Zbl 1403.76087
[21] Ryckelynck, D.; Hermanns, L.; Chinesta, F.; Alarcón, E., An efficient ‘a priori’ model reduction for boundary element models, Eng. Anal. Bound. Elem., 29, 8, 796-801 (2005) · Zbl 1182.76913
[22] Jiang, H.; Zhang, X.; Huang, X., Reduced-basis boundary element method for efficient broadband acoustic simulation, J. Sound Vib., 456, 374-385 (2019)
[23] Baydoun, S. K.; Voigt, M.; Jelich, C.; Marburg, S., A greedy reduced basis scheme for multifrequency solution of structural acoustic systems, Internat. J. Numer. Methods Engrg., 121, 2, 187-200 (2020) · Zbl 07843193
[24] Grimme, E. J., Krylov projection methods for model reduction, Vasa (1997), University of Illinois at Urbana-Champaign, (Ph.D. thesis)
[25] Bai, Z., Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems, Appl. Numer. Math., 43, 1-2, 9-44 (2002) · Zbl 1012.65136
[26] Antoulas, A. C., Approximation of Large-Scale Dynamical Systems (2005), Society for Industrial and Applied Mathematics · Zbl 1112.93002
[27] Keuchel, S.; Biermann, J.; Von Estorff, O., A combination of the fast multipole boundary element method and Krylov subspace recycling solvers, Eng. Anal. Bound. Elem., 65, 136-146 (2016) · Zbl 1403.65202
[28] Xie, X.; Zheng, H.; Jonckheere, S.; van de Walle, A.; Pluymers, B.; Desmet, W., Adaptive model reduction technique for large-scale dynamical systems with frequency-dependent damping, Comput. Methods Appl. Mech. Engrg., 332, 363-381 (2018) · Zbl 1440.74452
[29] Xie, X.; Zheng, H.; Jonckheere, S.; Desmet, W., Acoustic simulation of cavities with porous materials using an adaptive model order reduction technique, J. Sound Vib., 485, Article 115570 pp. (2020)
[30] Panagiotopoulos, D.; Deckers, E.; Desmet, W., Krylov subspaces recycling based model order reduction for acoustic BEM systems and an error estimator, Comput. Methods Appl. Mech. Engrg., 359, Article 112755 pp. (2020) · Zbl 1441.76083
[31] Bai, Z.; Su, Y., SOAR: A second-order Arnoldi method for the solution of the quadratic eigenvalue problem, SIAM J. Matrix Anal. Appl., 26, 3, 640-659 (2005) · Zbl 1080.65024
[32] Jith, J.; Sarkar, S., A model order reduction technique for systems with nonlinear frequency dependent damping, Appl. Math. Model., 77, 1662-1678 (2020) · Zbl 1481.93017
[33] Srinivasan Puri, R.; Morrey, D.; Bell, A. J.; Durodola, J. F.; Rudnyi, E. B.; Korvink, J. G., Reduced order fully coupled structural-acoustic analysis via implicit moment matching, Appl. Math. Model., 33, 11, 4097-4119 (2009) · Zbl 1205.74037
[34] Xie, X.; Zheng, H.; Jonckheere, S.; Pluymers, B.; Desmet, W., A parametric model order reduction technique for inverse viscoelastic material identification, Comput. Struct., 212, 188-198 (2019)
[35] Xie, X.; Zheng, H.; Jonckheere, S.; Desmet, W., Explicit and efficient topology optimization of frequency-dependent damping patches using moving morphable components and reduced-order models, Comput. Methods Appl. Mech. Engrg., 355, 591-613 (2019) · Zbl 1441.74178
[36] Zheng, C. J.; Chen, H. B.; Gao, H. F.; Du, L., Is the Burton-Miller formulation really free of fictitious eigenfrequencies?, Eng. Anal. Bound. Elem., 59, 43-51 (2015) · Zbl 1403.76129
[37] Marburg, S., The burton and miller method: Unlocking another mystery of its coupling parameter, J. Comput. Acoust., 24, 1 (2016) · Zbl 1360.76167
[38] Liu, Y. J.; Rizzo, F. J., A weakly singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave problems, Comput. Methods Appl. Mech. Engrg., 96, 2, 271-287 (1992) · Zbl 0754.76072
[39] Guiggiani, M.; Krishnasamy, G.; Rudolphi, T. J.; Rizzo, F. J., A general algorithm for the numerical solution of hypersingular boundary integral equations, J. Appl. Mech. Trans. ASME, 59, 3, 604-614 (1992) · Zbl 0765.73072
[40] Karami, G.; Derakhshan, D., An efficient method to evaluate hypersingular and supersingular integrals in boundary integral equations analysis, Eng. Anal. Bound. Elem., 23, 4, 317-326 (1999) · Zbl 0940.65139
[41] Gao, X. W., An effective method for numerical evaluation of general 2D and 3D high order singular boundary integrals, Comput. Methods Appl. Mech. Engrg., 199, 45-48, 2856-2864 (2010) · Zbl 1231.65236
[42] Simpson, R. N.; Scott, M. A.; Taus, M.; Thomas, D. C.; Lian, H., Acoustic isogeometric boundary element analysis, Comput. Methods Appl. Mech. Engrg., 269, 265-290 (2014) · Zbl 1296.65175
[43] Chen, L. L.; Lian, H.; Liu, Z.; Chen, H. B.; Atroshchenko, E.; Bordas, S. P., Structural shape optimization of three dimensional acoustic problems with isogeometric boundary element methods, Comput. Methods Appl. Mech. Engrg., 355, 926-951 (2019) · Zbl 1441.74290
[44] Kirkup, S. M.; Amini, S., Solution of the Helmholtz eigenvalue problem via the boundary element method, Internat. J. Numer. Methods Engrg., 36, 2, 321-330 (1993) · Zbl 0825.76470
[45] Bai, Z.; Su, Y., Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method, SIAM J. Sci. Comput., 26, 5, 1692-1709 (2005) · Zbl 1078.65058
[46] Lu, D.; Su, Y.; Bai, Z., Stability analysis of the two-level orthogonal Arnoldi procedure, SIAM J. Matrix Anal. Appl., 37, 1, 195-214 (2016) · Zbl 1382.65102
[47] Salvadori, A., Analytical integrations of hypersingular kernel in 3D BEM problems, Comput. Methods Appl. Mech. Engrg., 190, 31, 3957-3975 (2001) · Zbl 0987.65128
[48] Ihlenburg, F., Finite Element Analysis of Acoustic Scattering, 1-224 (1998), Springer · Zbl 0908.65091
[49] Turley, S., Acoustic Scattering from a SphereTech. Rep. (2006)
[50] 3D CAD Browser. URL https://www.3dcadbrowser.com/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.