×

Some results on finite-time stability of stochastic fractional-order delay differential equations. (English) Zbl 1505.93225


MSC:

93D40 Finite-time stability
34K37 Functional-differential equations with fractional derivatives
34K50 Stochastic functional-differential equations
Full Text: DOI

References:

[1] Zhou, Y.; Wang, J. R.; Zhang, L., Basic theory of fractional differential equations (2014), World Scientific: World Scientific Singapore · Zbl 1336.34001
[2] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of fractional differential equations (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003
[3] Podlubny, I.; Thimann, K. V., Fractional differential equation (1999), Academic Press: Academic Press San Diego · Zbl 0924.34008
[4] Miller, K. S.; Ross, B., An introduction to the fractional calculus and fractional differential equations (1993), Wiley: Wiley New York · Zbl 0789.26002
[5] Diethelm, K., The analysis of fractional differential equations (2010), Springer: Springer New York · Zbl 1215.34001
[6] Mao, X. R., Stochastic differential equations and applications (2011), Woodhead Publishing Limited: Woodhead Publishing Limited Abington Hall
[7] Prato, G. D.; Zabczyk, J., Stochastic equations in infinite dimensions (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0761.60052
[8] Øksendal, B., Stochastic differential equations, an introduction with applications (2003), Springer-Verlag: Springer-Verlag Heidelberg · Zbl 1025.60026
[9] Evans, L. C., An introduction to stochastic differential equations (2014), American Mathematical Society: American Mathematical Society Providence
[10] Benchohra, M.; Henderson, J.; Ntouyas, S. K., Impulsive differential equations and inclusions (2006), Hindawi Publishing Corporation: Hindawi Publishing Corporation New York · Zbl 1130.34003
[11] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S., Theory of impulsive differential equations (1989), World Scientific: World Scientific Singapore, London · Zbl 0719.34002
[12] Haddad, W. M.; Chellaboina, V.; Nersesov, S. G., Impulsive and hybrid dynamical systems (2006), Princeton University Press: Princeton University Press Princeton · Zbl 1114.34001
[13] Atay, F. M., Complex time-delay systems (2010), Springer: Springer Berlin Heidelberg · Zbl 1189.93005
[14] Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogosin, S. V., Mittag-leffler functions, related topics and applications (2014), Springer-Verlag: Springer-Verlag Berlin · Zbl 1309.33001
[15] Ye, H. P.; Gao, J. M., Henry-gronwall type retarded integral inequalities and their applications to fractional differential equations with delay, Appl Math Comput, 218, 8, 4152-4160 (2011) · Zbl 1247.26043
[16] Luo, D. F.; Zhu, Q. X.; Luo, Z. G., An averaging principle for stochastic fractional differential equations with time-delays, Appl Math Lett, 105, Article 106290 pp. (2020) · Zbl 1436.34072
[17] Fĕckan, M.; Zhou, Y.; Wang, J. R., On the concept and existence of solution for impulsive fractional differential equations, Commun Nonlinear Sci Numer Simul, 17, 7, 3050-3060 (2012) · Zbl 1252.35277
[18] Yan, Z. M.; Jia, X. M., Existence of optimal mild solutions and controllability of fractional impulsive stochastic partial integro-differential equations with infinite delay, Asian J Control, 21, 3, 725-748 (2019) · Zbl 1422.93020
[19] Yan, Z. M.; Jia, X. M., Optimal solutions of fractional nonlinear impulsive neutral stochastic functional integro-differential equations, Numer Funct Anal Optim, 40, 14, 1593-1643 (2019) · Zbl 1425.34092
[20] Ma, X.; Shu, X. B.; Mao, J. Z., Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay, Stoch Dyn, 20, 1, Article 2050003 pp. (2020) · Zbl 1442.34125
[21] Deng, S. F.; Shu, X. B.; Mao, J. Z., Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by fBm with noncompact semigroup via Mönch fixed point, J Math Anal Appl, 467, 1, 398-420 (2018) · Zbl 1405.60075
[22] Shu, X. B.; Lai, Y. Z.; Chen, Y. M., The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal, 74, 5, 2003-2011 (2011) · Zbl 1227.34009
[23] Arthi, G.; Park, J. H.; Jung, H. Y., Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional brownian motion, Commun Nonlinear Sci Numer Simul, 32, 145-157 (2016) · Zbl 1510.60045
[24] Liu, J. K.; Xu, W.; Guo, Q., Global attractiveness and exponential stability for impulsive fractional neutral stochastic evolution equations driven by fBm, Adv Difference Equ, 2020, 1, 63 (2020) · Zbl 1487.34155
[25] Abouagwa, M.; Cheng, F. F.; Li, J., Impulsive stochastic fractional differential equations driven by fractional brownian motion, Adv Difference Equ, 2020, 1, 57 (2020) · Zbl 1487.60104
[26] Abouagwa, M.; Li, J., Approximation properties for solutions to Itô doob stochastic fractional differential equations with non-lipschitz coefficients, Stoch Dyn, 19, 4, Article 1950029 pp. (2019) · Zbl 1422.34011
[27] Abouagwa, M.; Liu, J. C.; Li, J., Carathéodory approximations and stability of solutions to non-lipschitz stochastic fractional differential equations of Itô-doob type, Appl Math Comput, 329, 143-153 (2018) · Zbl 1427.34079
[28] Moghaddam, B. P.; Zhang, L.; Lopes, A. M.; Tenreiro Machado, J. A.; Mostaghim, Z. S., Sufficient conditions for existence and uniqueness of fractional stochastic delay differential equations, Stochastics, 92, 3, 379-396 (2019) · Zbl 1490.60172
[29] Umamaheswari, P.; Balachandran, K.; Annapoorani, N., Existence and stability results for caputo fractional stochastic differential equations with Lévy noise, Filomat, 34, 5, 1739-1751 (2020) · Zbl 1529.60041
[30] Ahmadova, A.; Mahmudov, N. I., Existence and uniqueness results for a class of fractional stochastic neutral differential equations, Chaos Solitons Fractals, 139, Article 110253 pp. (2020) · Zbl 1490.34094
[31] Anh, P. T.; Doan, T. S.; Huong, P. T., A variation of constant formula for caputo fractional stochastic differential equations, Statist Probab Lett, 145, 351-358 (2019) · Zbl 1410.34013
[32] Li, K. X.; Peng, J. G., Laplace transform and fractional differential equations, Appl Math Lett, 24, 12, 2019-2023 (2011) · Zbl 1238.34013
[33] Luo, D. F.; Zhu, Q. X.; Luo, Z. G., A novel result on averaging principle of stochastic hilfer-type fractional system involving non-lipschitz coefficients, Appl Math Lett, 122, Article 107549 pp. (2021) · Zbl 1481.60114
[34] Nadeem, M.; Dabas, J., Solvability of fractional order semi-linear stochastic impulsive differential equation with state-dependent delay, Proc Natl Acad Sci, India, Sect A Phys Sci, 90, 3, 411-419 (2020) · Zbl 1458.34135
[35] Lazarević, M. P.; Spasić, A. M., Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach, Math Comput Model, 49, 3-4, 475-481 (2009) · Zbl 1165.34408
[36] Zhang, Y. R.; Wang, J. R., Existence and finite-time stability results for impulsive fractional differential equations with maxima, J Appl Math Comput, 51, 67-79 (2016) · Zbl 1346.34053
[37] Luo, Z. J.; Wang, J. R., Finite time stability analysis of systems based on delayed exponential matrix, J Appl Math Comput, 55, 335-351 (2017) · Zbl 1378.34090
[38] Li, M. M.; Wang, J. R., Finite time stability of fractional delay differential equations, Appl Math Lett, 64, 170-176 (2017) · Zbl 1354.34130
[39] Li, M. M.; Wang, J. R., Exploring delayed mittag-leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl Math Comput, 324, 254-265 (2018) · Zbl 1426.34110
[40] Li, M. M.; Wang, J. R., Finite time stability and relative controllability of riemann-liouville fractional delay differential equations, Math Methods Appl Sci, 42, 18, 5945-7545 (2019) · Zbl 1440.34082
[41] Luo, Z. J.; Wei, W.; Wang, J. R., Finite time stability of semilinear delay differential equations, Nonlinear Dyn, 89, 713-722 (2017) · Zbl 1374.34285
[42] You, Z. L.; Wang, J. R.; Zhou, Y.; Fečkan, M., Representation of solutions and finite time stability for delay differential systems with impulsive effects, Int J Nonlinear Sci Numer Simul, 20, 2, 205-221 (2019) · Zbl 07048619
[43] Wang, J. R.; Luo, Z. J., Finite time stability of semilinear multi-delay differential systems, Trans Inst Meas Control, 40, 9, 2948-2959 (2017)
[44] Phat, V. N.; Thanh, N. T., New criteria for finite-time stability of nonlinear fractional-order delay systems: a gronwall inequality approach, Appl Math Lett, 83, 169-175 (2018) · Zbl 1388.93064
[45] Du, F. F.; Lu, J. G., Finite-time stability of neutral fractional order time delay systems with lipschitz nonlinearities, Appl Math Comput, 375, Article 125079 pp. (2020)
[46] Du, F. F.; Lu, J. G., New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay, Appl Math Comput, 389, Article 125616 pp. (2021) · Zbl 1508.34058
[47] Du, F. F.; Lu, J. G., New criteria on finite-time stability of fractional-order hopfield neural networks with time delays, IEEE Trans Neural Netw Learn Syst, 32, 9, 3858-3866 (2021)
[48] Du, F. F.; Lu, J. G., Finite-time stability of fractional-order fuzzy cellular neural networks with time delays, Fuzzy Set Syst (2021)
[49] Luo, D. F.; Luo, Z. G., Uniqueness and novel finite-time stability of solutions for a class of nonlinear fractional delay difference systems, Discrete Dyn Nat Soc, 2018, 8476285 (2018) · Zbl 1417.39060
[50] Luo, D. F.; Luo, Z. G., Existence and finite-time stability of solutions for a class of nonlinear fractional differential equations with time-varying delays and non-instantaneous impulses, Adv Difference Equ, 2019, 155 (2019) · Zbl 1459.34032
[51] Li, Q.; Luo, D. F.; Luo, Z. G.; Zhu, Q. X., On the novel finite-time stability results for uncertain fractional delay differential equations involving noninstantaneous impulses, Math Probl Eng, 2019, 9097135 (2019) · Zbl 1435.93140
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.