×

Robust mean field social control problems with applications in analysis of opinion dynamics. (English) Zbl 1505.91306

Summary: This paper investigates the social optimality of linear quadratic mean field control systems with unmodelled dynamics. The objective of agents is to optimise the social cost, which is the sum of costs of all agents. By variational analysis and direct decoupling methods, the social optimal control problem is analysed, and two equivalent auxiliary robust optimal control problems are obtained for a representative agent. By solving the auxiliary problem with consistent mean field approximations, a set of decentralised strategies is designed, and its asymptotic social optimality is further proved. Next, the results are applied into the study of opinion dynamics in social networks. The evolution of opinions is analysed over finite and infinite horizons, respectively. All opinions are shown to reach agreement with the average opinion in a probabilistic sense. Finally, local interactions among multiple sub-populations are examined via graphon theory.

MSC:

91D30 Social networks; opinion dynamics
49N80 Mean field games and control
49N10 Linear-quadratic optimal control problems

References:

[1] Anderson, B. D. O.; Ye, M., Recent advances in the modelling and analysis of opinion dynamics on influence networks, International Journal of Automation and Computing, 16, 2, 129-149 (2019) · doi:10.1007/s11633-019-1169-8
[2] Arabneydi, J.; Aghdam, A. G., Deep teams: Decentralized decision making with finite and infinite number of agents, IEEE Transactions on Automatic Control, 65, 10, 4230-4245 (2020) · Zbl 1533.91119 · doi:10.1109/TAC.9
[3] Arabneydi, J., & Mahajan, A. (2016, August). Linear quadratic mean field teams: Optimal and approximately optimal decentralized solutions. Available on arXiv, arXiv:1609.00056.
[4] Arefin, M. R.; Masaki, T.; Kabir, K. M. A.; Tanimoto, J., Interplay between cost and effectiveness in influenza vaccine uptake: A vaccination game approach, Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 475, 2232, 20190608. (2019) · Zbl 1472.92196 · doi:10.1098/rspa.2019.0608
[5] Başar, T.; Olsder, G. J., Dynamic noncooperative game theory (1998), Society for Industrial and Applied Mathematics
[6] Bauso, D.; Tembine, H.; Başar, T., Opinion dynamics in social networks through mean-field games. \(####\)-disturbance, SIAM Journal on Control and Optimization, 54, 6, 3225-3257 (2016) · Zbl 1351.93004 · doi:10.1137/140985676
[7] Bensoussan, A.; Frehse, J.; Yam, P., Mean field games and mean field type control theory (2013), Springer · Zbl 1287.93002
[8] Bensoussan, A.; Sung, K. C. J.; Yam, S. C. P., Linear-quadratic time-inconsistent mean field games, Dynamic Games and Applications, 3, 4, 537-552 (2013) · Zbl 1314.91040 · doi:10.1007/s13235-013-0090-y
[9] Caines, P. E.; Huang, M., 2018 IEEE conference on decision and control, Graphon mean field games and the GMFG equations, 4129-4134 (2019)
[10] Caines, P. E., Huang, M., & Malhamé, R. P. (2017). Mean field games. In T. Basar & G. Zaccour (Eds.), Handbook of dynamic game theory. Spinger.
[11] Carmona, R.; Delarue, F., Probabilistic analysis of mean-field games, SIAM Journal on Control and Optimization, 51, 4, 2705-2734 (2013) · Zbl 1275.93065 · doi:10.1137/120883499
[12] Chen, G.; Duan, X.; Friedkin, N. E.; Bullo, F., Social power dynamics over switching and stochastic influence networks, IEEE Transactions on Automatic Control, 64, 2, 582-597 (2019) · Zbl 1482.91160 · doi:10.1109/TAC.2018.2822182
[13] Firoozi, D.; Jaimungal, S.; Caines, P. E., Convex analysis for LQG systems with applications to major-minor LQG mean-field game systems, Systems & Control Letters, 142, 104734 (2020) · Zbl 1451.91015 · doi:10.1016/j.sysconle.2020.104734
[14] Friedkin, N. E.; Proskurnikov, A. V.; Tempo, R.; Parsegov, S. E., Network science on belief system dynamics under logic constraints, Science, 354, 6310, 321-326 (2016) · Zbl 1355.91060 · doi:10.1126/science.aag2624
[15] Gao, S.; Caines, P. E., Graphon control of large-scale networks of linear systems, IEEE Transactions on Automatic Control, 65, 10, 4090-4105 (2020) · Zbl 1533.93021 · doi:10.1109/TAC.9
[16] Gao, S., Caines, P. E, & Huang, M. (2020, April). LQG graphon mean field games. Available on arXiv, arXiv:2004.00679.
[17] Gomes, D. A.; Saude, J., Mean field games models: A brief survey, Dynamic Games and Applications, 4, 2, 110-154 (2014) · Zbl 1314.91048 · doi:10.1007/s13235-013-0099-2
[18] Ho, Y.-C., Team decision theory and information structures, Proceedings of the IEEE, 68, 6, 644-654 (1980) · doi:10.1109/PROC.1980.11718
[19] Huang, J.; Huang, M., Robust mean field linear-quadratic-Gaussian games with unknown \(####\)-disturbance, SIAM Journal on Control and Optimization, 55, 5, 2811-2840 (2017) · Zbl 1414.91057 · doi:10.1137/15M1014437
[20] Huang, M., Large-population LQG games involving a major player: The Nash certainty equivalence principle, SIAM Journal on Control and Optimization, 48, 5, 3318-3353 (2010) · Zbl 1200.91020 · doi:10.1137/080735370
[21] Huang, M., Caines, P. E., & Malhamé, R. P. (2003, December). Individual and mass behaviour in large population stochastic wireless power control problems: Centralized and Nash equilibrium solutions. In 42nd IEEE international conference on decision and control (pp. 98-103). IEEE.
[22] Huang, M.; Caines, P. E.; Malhamé, R. P., Large-population cost-coupled LQG problems with non-uniform agents: Individual-mass behavior and decentralized ϵ-Nash equilibria, IEEE Transactions on Automatic Control, 52, 9, 1560-1571 (2007) · Zbl 1366.91016 · doi:10.1109/TAC.2007.904450
[23] Huang, M.; Caines, P. E.; Malhamé, R. P., Social optima in mean field LQG control: Centralized and decentralized strategies, IEEE Transactions on Automatic Control, 57, 7, 1736-1751 (2012) · Zbl 1369.49052 · doi:10.1109/TAC.2012.2183439
[24] Huang, M.; Malhamé, R. P.; Caines, P. E., Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Communication in Information and Systems, 6, 3, 221-251 (2006) · Zbl 1136.91349 · doi:10.4310/CIS.2006.v6.n3.a5
[25] Huang, M., & Nguyen, S. L. (2019, April). Linear-quadratic mean field social optimization with a major player. Available on arXiv, arXiv: 1904.03346.
[26] Huang, M.; Zhou, M., Linear quadratic mean field games: Asymptotic solvability and relation to the fixed point approach, IEEE Transactions on Automatic Control, 65, 4, 1397-1412 (2020) · Zbl 1533.91045 · doi:10.1109/TAC.9
[27] Jia, P.; Mirtabatabaei, A.; Friedkin, N. E.; Bullo, F., Opinion dynamics and the evolution of social power in influence networks, SIAM Review, 57, 3, 367-397 (2015) · Zbl 1339.91098 · doi:10.1137/130913250
[28] Larranaga, M.; Denis, J.; Assaad, M.; Turck, K. D., Energy-efficient distributed transmission scheme for MTC in dense wireless networks: A mean-field approach, IEEE Internet of Things Journal, 7, 1, 477-490 (2020) · doi:10.1109/JIoT.6488907
[29] Lasry, J. M.; Lions, P. L., Mean field games, Japanese Journal of Mathematics, 2, 1, 229-260 (2007) · Zbl 1156.91321 · doi:10.1007/s11537-007-0657-8
[30] Li, T.; Zhang, J.-F., Asymptotically optimal decentralized control for large population stochastic multiagent systems, IEEE Transactions on Automatic Control, 53, 7, 1643-1660 (2008) · Zbl 1367.93249 · doi:10.1109/TAC.2008.929370
[31] Liang, Y., & Wang, B.-C. (2019, July). Robust mean field social optimal control with applications to opinion dynamics. In IEEE 15th international conference on control and automation (pp. 1079-1084). IEEE.
[32] Lovász, L., Large networks and graph limits, 60 (2012), American Mathematical Society · Zbl 1292.05001
[33] Ma, J.; Yong, J., Forward-backward stochastic differential equations and their applications (1999), Springer · Zbl 0927.60004
[34] Moon, J.; Başar, T., Linear quadratic risk-sensitive and robust mean field games, IEEE Transactions on Automatic Control, 62, 3, 1062-1077 (2017) · Zbl 1366.91018 · doi:10.1109/TAC.2016.2579264
[35] Mou, L.; Yong, J., Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method, Journal of Industrial and Management Optimization, 2, 1, 95-117 (2006) · Zbl 1152.91305 · doi:10.3934/jimo.2006.2.95
[36] Radner, R., Team decision problems, Annals of Mathematical Statistics, 33, 3, 857-881 (1962) · Zbl 0217.57103 · doi:10.1214/aoms/1177704455
[37] Thygesen, U. H. (1997). A survey of Lyapunov techniques for stochastic differential equations (IMM Technical Report). Copenhagen: Department of Mathematical Modelling, Technical University of Denmark.
[38] Wang, B.-C.; Huang, J.; Zhang, J.-F., Social optima in robust mean field LQG control: From finite to infinite horizon, IEEE Transactions on Automatic Control, 66, 4, 1529-1544 (2021) · Zbl 1536.91056 · doi:10.1109/TAC.9
[39] Wang, B.-C.; Huang, M., Mean field production output control with sticky prices: Nash and social solutions, Automatica, 100, 6, 90-98 (2019) · Zbl 1411.91064 · doi:10.1016/j.automatica.2018.11.006
[40] Wang, B.-C.; Zhang, J.-F., Mean field games for large-population multi-agent systems with Markov jump parameters, SIAM Journal on Control and Optimization, 50, 4, 2208-2334 (2012) · Zbl 1263.91007 · doi:10.1137/100800324
[41] Wang, B.-C.; Zhang, J.-F., Distributed control of multi-agent systems with random parameters and a major agent, Automatica, 48, 9, 2093-2106 (2012) · Zbl 1257.93008 · doi:10.1016/j.automatica.2012.06.050
[42] Wang, B.-C.; Zhang, J.-F., Social optima in mean field linear-quadratic-Gaussian models with Markov jump parameters, SIAM Journal on Control and Optimization, 55, 1, 429-456 (2017) · doi:10.1137/15M104178X
[43] Weintraub, G.; Benkard, C.; Roy, B. V., Markov perfect industry dynamics with many firms, Econometrica, 76, 6, 1375-1411 (2008) · Zbl 1154.91346 · doi:10.3982/ECTA6158
[44] Yu, X., Wang, B.-C., & Pang, D. (2018, June). Social optima in mean field LQ control with local disturbance. In IEEE 14th international conference on control and automation (pp. 630-635). IEEE.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.