×

Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion. (English) Zbl 1505.35040

The paper under review discusses the global boundedness, asymptotic stability and pattern formation of predator-prey systems with density-dependent prey-taxis in a two-dimensional bounded domain with Neumann boundary conditions. The authors establish the existence of classical solutions with uniform-in time bound and the global stability of the spatially homogeneous prey-only steady states and coexistence steady states under certain conditions on parameters by constructing Lyapunov functionals. Furthermore, they use numerical simulations to demonstrate that spatially homogeneous time-periodic patterns, stationary spatially inhomogeneous patterns and chaotic spatio-temporal patterns are all possible for the parameters outside the stability regime. In particular, they also find from numerical simulations that the temporal dynamics between linearised system and nonlinear systems are quite different.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
92D25 Population dynamics (general)
35B36 Pattern formations in context of PDEs

References:

[1] Alikakos, N. D. \((1979) {L^p}\) bounds of solutions of reaction-diffusion equations. Comm. Part. Differ. Equations4, 827-868. · Zbl 0421.35009
[2] Ainseba, B. E., Bendahmane, M. & Noussair, A. (2008) A reaction-diffusion system modeling predator-prey with prey-taxis. Nonlinear Anal. Real World Appl.9(5), 2086-2105. · Zbl 1156.35404
[3] Amann, H. (1989) Dynamic theory of quasilinear parabolic equations III. Global existence. Math. Z.202, 219-250. · Zbl 0702.35125
[4] Amann, H. (1990) Dynamic theory of quasilinear parabolic equations II. Reaction-diffusion systems. Differ. Integral Equ.3(1), 13-75. · Zbl 0729.35062
[5] Amann, H. (1992) Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), Vol. 133. Teubner-Texte Math., Teubner, Stuttgart, pp. 9-126. · Zbl 0810.35037
[6] Chakraborty, A., Singh, M., Lucy, D. & Ridland, P. (2007) Predator-prey model with prey-taxis and diffusion. Math. Comp. Mod.46, 482-498. · Zbl 1132.35395
[7] Chesson, P. & Murdoch, W. (1986) Aggregation of risk: relationships among host-parasitoid models. Am. Nat.127, 696-715.
[8] Cosner, C. (2014) Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrere. Contin. Dyn. Syst.34, 1701-1745. · Zbl 1277.35002
[9] Fu, X., Tang, L.-H., Liu, C., Huang, J.-D., Hwa, T. & Lenz, P. (2012) Stripe formation in bacterial system with density-suppressed motility. Phys. Rev. Lett.108, 198102.
[10] Grünbaum, D. (1998) Using spatially explicit models to characterize foraging performance in heterogeneous landscapes. Am. Nat.151, 97-115.
[11] Holling, C. S. (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entom. Soc. Can.45, 1-60.
[12] Jin, H. Y. & Wang, Z. A. (2017) Global stability of prey-taxis systems. J. Differ. Equations262, 1257-1290. · Zbl 1364.35143
[13] Jin, H. Y., Kim, Y. J. & Wang, Z. A. (2018) Boundedness, stabilization and pattern formation driven by density-suppressed motility. SIAM J. Appl. Math.78, 1632-1657. · Zbl 1393.35100
[14] Jüngel, A. (2010) Diffusive and nondiffusive population models. In: Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Model. Simul. Sci. Eng. Technol., Boston, MA: Birkhäuser Boston, Inc., pp. 397-425. · Zbl 1398.92205
[15] Jüngel, A., Kuehn, C. & Trussardi, L. (2017) A meeting point of entropy and bifurcations in cross-diffusion herding. European J. Appl. Math.28(2), 317-356. · Zbl 1386.35162
[16] Kareiva, P. & Odell, G. T. (1987) Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. Am. Nat.130, 233-270.
[17] Keller, E. F. & Segel, L. A. (1971) Model for chemotaxis. J. Theor. Biol.30(2), 225-234. · Zbl 1170.92307
[18] Kelley, W. G. & Peterson, A. C. (2010) The Theory of Differential Equations - Classical and Qualitative, Springer. · Zbl 1201.34001
[19] Kowalczyk, R. & Szymańska, Z. (2008) On the global existence of solutions to an aggregation model. J. Math. Anal. Appl.343, 379-398. · Zbl 1143.35333
[20] Ladyzhenskaya, O., Solonnikov, V. & Uralceva, N. (1968) Linear and Quasilinear Equations of Parabolic Type.Providence, RI: AMS. · Zbl 0174.15403
[21] Lasalle, J. P. (1960) Some extensions of Lyapunov’s second method. IRE Trans. Circ. Theo. CT-7, 520-527 (1960).
[22] Lee, J. M., Hillen, T. & Lewis, M. A. (2008) Continuous traveling waves for prey-taxis. Bull. Math. Biol.70, 654-676. · Zbl 1142.92043
[23] Lee, J. M., Hillen, T. & Lewis, M. A. (2009) Pattern formation in prey-taxis systems. J. Biol. Dyn.3(6), 551-573. · Zbl 1315.92064
[24] Liu, C., Fu, X., Liu, L., Ren, X., Chau, C. K. L., Li, S., Zeng, H., Chen, G., Tang, L., Lenz, P., Cui, X., Huang, W., Hwa, T. & Huang, J. (2011) Sequential establishment of stripe patterns in an expanding cell population. Science334, 238-241.
[25] Lotka, A. J. (1925) Elements of Physical Biology. Baltimore: Williams and Wilkins Co. · JFM 51.0416.06
[26] Ma, M., Peng, R. & Wang, Z. (2020) Stationary and non-stationary patterns of the density-suppressed motility model. Phys. D402, 132259, 13 pages. · Zbl 1453.37086
[27] Mimura, M. & Kawasaki, K. (1980) Spatial segregation in competitive interaction-diffusion equations. J. Math. Biol.9(1), 49-64. · Zbl 0425.92010
[28] Mizoguchi, N. & Souplet, P. (2014) Nondegeneracy of blow-up points for the parabolic Keller-Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire31, 851-875. · Zbl 1302.35075
[29] Murdoch, W. W., Briggs, C. J. & Nisbert, R. M. (2003) Consumer-Resource Dynamics (Monographs in Population Biology-36). Princeton University Press.
[30] Murdoch, W., Chesson, J. & Chesson, P. (1985) Biological control in theory and practice. Am. Nat.125, 344-366.
[31] Okubo, A. & Levin, S. A. (2001) Diffusion and Ecological Problems: Modern Perspective. Interdisciplinary Applied Mathematics, Vol. 14. 2nd ed. Berlin: Springer. · Zbl 1027.92022
[32] Porzio, M. M. & Vespri, V. (1993) Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equations103(1), 146-178. · Zbl 0796.35089
[33] Rosenzweig, M. L. & Macarthur, R. H. (1963) Graphical representation and stability conditions of predator-prey interactions. Am. Nat.97, 209-223.
[34] Sapoukhina, N., Tyutyunov, Y. & Arditi, R. (2003) The role of prey taxis in biological control: a spatial theoretical model. Am. Nat.162, 61-76.
[35] Smith-Roberge, J., Iron, D. & Kolokolnikov, T. (2019) Pattern formation in bacterial colonies with density-dependent diffusion. European J. Appl. Math.30(1), 196-218. · Zbl 1407.92030
[36] Souplet, P. & Quittner, P. (2007) Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States.Basel, Boston, Berlin: Birkhäuser Advanced Texts. · Zbl 1128.35003
[37] Tao, Y. S. (2010) Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis. Nonlinear Anal. Real World Appl.11(3), 2056-2064. · Zbl 1195.35171
[38] Tao, Y. S. & Winkler, M. (2011) A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal.43(2), 685-704. · Zbl 1259.35210
[39] Tao, Y. S. & Winkler, M. (2012) Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equations252(1), 692-715. · Zbl 1382.35127
[40] Turchin, P. (2003) Complex Population Dynamics: A Theoretical/Empirical Synthesis. Monographs in Population Biology-35. Princeton University Press. · Zbl 1062.92077
[41] Volterra, V. (1926) Fluctuations in the abundance of a species considered mathematically. Nature118, 558-560. · JFM 52.0453.03
[42] Wang, K., Wang, Q. & Yu, F. (2017) Stationary and time periodic patterns of two predator and one-prey systems with prey-taxis. Discrere. Contin. Dyn. Syst.37(1), 505-543. · Zbl 1357.35044
[43] Wang, M. X. (2018) Note on the Lyapunov functional method. Appl. Math. Lett.75, 102-107. · Zbl 1524.92085
[44] Wang, Q., Song, Y. & Shao, L. J. (2017) Nonconstant positive steady states and pattern formation of 1D prey-taxis systems. J. Nonlinear Sci.27(1), 71-97. · Zbl 1368.92160
[45] Wang, J. P. & Wang, M. X. (2018) Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis. Z. Angew. Math. Phys.69(3), 63, 24 pages. · Zbl 1393.35105
[46] Wu, S., Shi, J. P. & Wu, B. (2016) Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis. J. Differ. Equations260(7), 5847-5874. · Zbl 1335.35131
[47] Wu, S., Wang, J. & Shi, J. (2018) Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis. Math. Models Method Appl. Sci.28(11), 2275-2312. · Zbl 1411.35171
[48] Yi, F., Wei, J. & Shi, J. (2009) Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equations246, 1944-1977. · Zbl 1203.35030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.