×

Continuous quivers of type \(A\) (III) embeddings of cluster theories. (English) Zbl 1502.13051

Cluster algebras were introduced by S. Fomin and A. Zelevinsky [J. Am. Math. Soc. 15, No. 2, 497–529 (2002; Zbl 1021.16017)]. K. Igusa and G. Todorov introduced a continuous version of a cluster category in [Algebr. Represent. Theory 18, No. 1, 65–101 (2015; Zbl 1329.18012)]. In part (I) [Rend. Circ. Mat. Palermo (2), (2022; doi:10.1007/s12215-021-00691-x)], the authors defined continuous quivers of type \(A\), generalizing quivers of type \(A\). Next, J. D. Rock in part (II) [“Continuous quivers of type A (II). The Auslander-Reiten space”, Preprint, arXiv:1910.04140] introduced the Auslander-Reiten \((AR)\) space, a continuous analog to the \(AR\) quiver.
This paper is part (III) of this series; the purpose is to form a continuous generalization of clusters and mutations. The authors classify which continuous quivers of type \(A\) are derived equivalent. They show that the original continuous cluster category of Igusa and Todorov [loc. cit.] is a localization of this new weak continuous cluster category. Next, cluster theories to be appropriate groupoids are defined and shown that cluster structures satisfy the conditions for cluster theories. The relationship between different cluster theories is described: some new and some obtained from cluster structures. The notion of continuous mutation which appears in cluster theories (but not in cluster structures) appears in the next paper by J. D. Rock, “Continuous quivers of type A (IV) continuous mutation and geometric models of E-clusters”, Preprint, arXiv:2004.11341].

MSC:

13F60 Cluster algebras
16G20 Representations of quivers and partially ordered sets

References:

[1] Baur, K. and Graz, S., Transfinite mutations in the completed infinity-gon, J. Combin. Theory Ser. A155 (2018), 321-359. doi: doi:10.1016/j.jcta.2017.11.011. · Zbl 1377.05198
[2] Botnan, M. B. and Crawley-Boevey, W., Decomposition of persistence modules, Proc. Amer. Math. Soc.148 (2020), 4581-4596. doi: doi:10.1090/proc/14790. · Zbl 1461.16013
[3] Buan, A., Iyama, O., Reiten, I., and Scott, J., Cluster structures for 2-Calabi-Yau categories and unipotent groups. Compos. Math.145 (2009), no. 4, 1035-1079. · Zbl 1181.18006
[4] Buan, A., Marsh, B., Reineke, M., Reiten, I., and Todorov, G., Tilting theory and cluster combinatorics, Adv. Math.204 (2006), no. 2, 572-618. doi: doi:10.1016/j.aim.2005.06.003. · Zbl 1127.16011
[5] Caldero, P., Chapoton, F., and Schiffler, R., Quivers with relations arising from clusters \(({A}_n\) Case), Trans. Amer. Math. Soc.358 (2006), no. 3, 1347-1364. doi: doi:10.1090/S0002-9947-05-03753-0. · Zbl 1137.16020
[6] Fomin, S. and Zelevinksy, A., Cluter algebras I: Foundations, J. Amer. Math. Soc.15 (2002), no. 2, 497-529. doi: doi:10.1090/S0894-0347-01-00385-X. · Zbl 1021.16017
[7] Fomin, S. and Zelevinksy, A., Cluster algebras II: Finite type classification, Invent. Math.154 (2002), no. 1, 63-121. doi: doi:10.1007/s00222-003-0302-y. · Zbl 1054.17024
[8] Fomin, S. and Zelevinksy, A., Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J.126 (2005), no. 1, 1-52. doi: doi:10.1215/S0012-7094-04-12611-9. · Zbl 1135.16013
[9] Fomin, S. and Zelevinksy, A., Cluster algebras IV: Coefficients, Compos. Math.143 (2007), no. 1, 112-164. doi: doi:10.1112/S0010437X06002521. · Zbl 1127.16023
[10] Garcia, M. and Igusa, K., Continuously triangulating the continuous cluster category, Topology Appl.285 (2020), 107411. doi: doi:10.1016/j.topol.2020.107411. · Zbl 1461.55017
[11] Happel, D., Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge University Press, 1988, New York, NY, USA. doi: doi:10.1017/CBO9780511629228. · Zbl 0635.16017
[12] Holm, T. and Jørgensen, P., On a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon, Math. Z.270 (2012), no. 1, 277-295. doi: doi:10.1007/s00209-010-0797-z. · Zbl 1234.13020
[13] Holm, T. and Jørgensen, P., Cluster tilting vs. weak cluster tilting in Dynkin type A infinity, Forum Math.27 (2015), no. 2, 1117-1137, · Zbl 1349.13047
[14] Igusa, K., Rock, J. D., and Todorov, G., Continuous Quivers of Type A (I) Foundations, Rendiconti del Circolo Matematico di Palermo Series 2 (2022), https://doi.org/10.1007/s12215-021-00691-x.
[15] Igusa, K. and Todorov, G., Continuous cluster categories I, Algebr. Represent. Theory18 (2015), no. 1, 65-101. doi: doi:10.1007/s10468-014-9481-z. · Zbl 1329.18012
[16] Jørgensen, P. and Yakimov, M., \(c\) -vectors of 2-Calabi-Yau categories and Borel subalgebras of \({\text{sl}}_{\infty } \), Selecta Math. (N.S.)26 (2020), no. 1, 1-46. doi: doi:10.1007/s00029-019-0525-4. · Zbl 1473.17061
[17] Kashiwara, M. and Schapira, P., Categories and Sheaves, Grundlehren Math. Wiss. 60 (2008), no. 2, 217-221. doi: doi:10.11429/sugaku.0602217 · Zbl 1118.18001
[18] Neeman, A., Triangulated Categories, Ann. Math. Stud. 148, Princeton University Press, 2001, Princeton, NJ, USA. · Zbl 0974.18008
[19] Rock, J. D., Continuous quivers of type \(\text{A} \) (II) the Auslander-Reiten space, preprint, 2020. arXiv:1910.04140v2 [math.RT].
[20] Rock, J. D., Continuous quivers of type \(A\) (IV) continuous mutation and geometric models of E-clusters, preprint, 2020. arXiv:2004.11341v1 [math.RT].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.