×

Analysis of a stochastic HBV infection model with delayed immune response. (English) Zbl 1501.92189


MSC:

92D30 Epidemiology
34K50 Stochastic functional-differential equations

References:

[1] S, Modeling the mechanisms of acute hepatitis B virus infection, J. Theor. Biol., 247, 23-35 (2007) · Zbl 1455.92022 · doi:10.1016/j.jtbi.2007.02.017
[2] R, Dynamics of hepatitis B virus infection, Microb. Infect., 4, 829-835 (2002) · doi:10.1016/S1286-4579(02)01603-9
[3] J. I. Weissberg, L. L. Andres, C. I. Smith, S. Weick, J. E. Nichols, G. Garcia, et al, Survival in chronic hepatitis B, Ann. Intern. Med., 101 (5), 613-616.
[4] I, Immune-mediated liver injury in hepatitis B virus infection, Immun. Netw., 15, 191 (2015) · doi:10.4110/in.2015.15.4.191
[5] C. A. Janeway, J. P. Travers, M. Walport, M. J. Sholmchik, Immunobiology: The Immune System in Health and Disease 5th edition, New York, Garland Science, 2001.
[6] F. A. Rihan, Delay Differential Equations and Applications to Biology, 2021. · Zbl 07332853
[7] K, A generalized HBV model with diffusion and two delays, Comput. Math. Appl., 69, 31-40 (2015) · Zbl 1362.92075 · doi:10.1016/j.camwa.2014.11.010
[8] K, Global stability of one and two discrete delay models for chronic hepatitis B infection with {HBV DNA}-containing capsids, Comput. Appl. Math., 36, 525-536 (2017) · Zbl 1360.92106 · doi:10.1007/s40314-015-0242-3
[9] K. Hattaf, K. Manna, Modeling the dynamics of hepatitis B virus infection in presence of capsids and immunity, in Mathematical Modelling and Analysis of Infectious Diseases, (2020), 269-294. · Zbl 1471.92313
[10] T, Stochastic modeling of the impact of random forcing on persistent hepatitis B virus infection, Math. Comput. Simul., 96, 54-65 (2014) · Zbl 1533.92129 · doi:10.1016/j.matcom.2011.10.002
[11] X, Dynamics of a stochastic HBV infection model with cell-to-cell transmission and immune response, Math. Biosci. Eng., 18, 616-642 (2021) · Zbl 1471.92109 · doi:10.3934/mbe.2021034
[12] C, The stationary distribution of hepatitis B virus with stochastic perturbation, Appl. Math. Lett., 100, 106017 (2020) · Zbl 1439.92176 · doi:10.1016/j.aml.2019.106017
[13] T, A stochastic model for the transmission dynamics of hepatitis B virus, J. Biol. Dyn., 13, 328-344 (2019) · Zbl 1448.92309 · doi:10.1080/17513758.2019.1600750
[14] D. Kiouach, Y. Sabbar, Ergodic stationary distribution of a stochastic hepatitis B epidemic model with interval-valued parameters and compensated poisson process, Comput. Math. Methods Med., 2020 (2020). · Zbl 1431.92138
[15] G. Bocharov, V. Volpert, B. Ludewig, A. Meyerhans, Mathematical Immunology of Virus Infections, 2018. · Zbl 1401.92002
[16] I, Modelling stochastic and deterministic behaviours in virus infection dynamics, Math. Model Nat. Phenom., 12, 63-77 (2017) · Zbl 1382.35317 · doi:10.1051/mmnp/201712505
[17] Y. Yang, L. Zou, S. Ruan, Global Dynamics of a Delayed Within-Host Viral Infection Model with Both Virus-to-Cell and Cell-to-Cell Transmissions, 2015. · Zbl 1331.34160
[18] S. Hews, S. Eikenberry, J. D. Nagy, Y. Kuang, Rich Dynamics of a Hepatitis B Viral Infection Model with Logistic Hepatocyte Growth, 2010. · Zbl 1311.92117
[19] Y, Predicting hepatitis B virus infection based on health examination data of community population, Int. J. Environ. Res. Public Health, 16, 4842 (2019) · doi:10.3390/ijerph16234842
[20] X, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM J. Appl. Math., 74, 898-917 (2014) · Zbl 1304.34139 · doi:10.1137/130930145
[21] F, Dynamics and sensitivity analysis of fractional-order delay differential model for coronavirus (COVID-19) infection, Prog. Fract. Differ. Appl., 7, 43-61 (2021) · doi:10.18576/pfda/070105
[22] S, Threshold dynamics of HCV model with cell-to-cell transmission and a non-cytolytic cure in the presence of humoral immunity, Commun. Nonlinear Sci. Numer. Simul., 61, 180-197 (2018) · Zbl 1470.92189 · doi:10.1016/j.cnsns.2018.02.010
[23] F, Dynamics of hepatitis C virus infection: mathematical modeling and parameter estimation, Math. Model Nat. Phenom., 12, 33-47 (2017) · Zbl 1385.34037 · doi:10.1051/mmnp/201712503
[24] A, Within-host mathematical models of hepatitis B virus infection: Past, present, and future, Curr. Opin. Syst. Biol., 18, 27-35 (2019) · doi:10.1016/j.coisb.2019.10.003
[25] M. Nowak, R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, 2000. · Zbl 1101.92028
[26] X. Zhang, H. Peng, Stationary distribution of a stochastic cholera epidemic model with vaccination under regime switching, Appl. Math. Lett., 102 (2020). · Zbl 1444.92130
[27] F, Stochastic SIRC epidemic model with time-delay for COVID-19, Adv. Differ. Equation, 2020, 1-20 (2020) · Zbl 1486.92277 · doi:10.1186/s13662-019-2438-0
[28] Q, Dynamical behavior of a higher order stochastically perturbed SIRI epidemic model with relapse and media coverage, Chaos Solitons Fractals., 139, 110013 (2020) · Zbl 1490.92104 · doi:10.1016/j.chaos.2020.110013
[29] X. Mao, Stochastic Differential Equations and Their Applications, Horwood, Chichester, 1997. · Zbl 0892.60057
[30] Q, Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation, Appl. Math. Lett., 73, 8-15 (2017) · Zbl 1377.92095 · doi:10.1016/j.aml.2017.04.021
[31] Q, Asymptotic behavior of a stochastic delayed HIV-1 infection model with nonlinear incidence, Phys. A, 486, 867-882 (2017) · Zbl 1499.92120 · doi:10.1016/j.physa.2017.05.069
[32] R. Z. Hasminskii, Stochastic Stability of Differential Equations, Alphen aan den Rijn, Sijthoff & Noordhoff, 1980. · Zbl 0441.60060
[33] S, Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stoch. Process. Their. Appl., 116, 370-380 (2006) · Zbl 1096.60026 · doi:10.1016/j.spa.2005.08.004
[34] A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994. · Zbl 0815.15016
[35] R, A strong law of large numbers for local martingales, Stochastics, 3247, 217-228 (1980) · Zbl 0435.60037
[36] X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2007. · Zbl 1138.60005
[37] H, Modeling hepatitis C virus dynamics: Liver regeneration and critical drug efficacy, J. Theor. Biol., 247, 371-381 (2007) · Zbl 1455.92070 · doi:10.1016/j.jtbi.2007.03.006
[38] D, Mathematical models of immune effector responses to viral infections: Virus control versus the development of pathology, J. Comput. Appl. Math., 184, 301-319 (2005) · Zbl 1073.92022 · doi:10.1016/j.cam.2004.08.016
[39] J, Modeling immune response and its effect on infectious disease outbreak dynamics, Theor. Biol. Med. Model., 13, 1-21 (2016) · doi:10.1186/s12976-016-0027-4
[40] D, Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses, J. Gen. Virol., 84, 1743-1750 (2003) · doi:10.1099/vir.0.19118-0
[41] C, Numerical analysis of explicit one-step methods for stochastic delay differential equations, LMS J. Comput. Math., 3, 315-335 (2000) · Zbl 0974.65008 · doi:10.1112/S1461157000000322
[42] Z, An analysis of stability of Milstein method for stochastic differential equations with delay, Comput. Math. Appl., 51, 1445-1452 (2006) · Zbl 1136.65009 · doi:10.1016/j.camwa.2006.01.004
[43] B, A stochastic SIRI epidemic model with lévy noise, Discret. Contin. Dyn. Syst. Ser. B., 23, 3645-3661 (2018) · Zbl 1447.92383
[44] K, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8, 49 (2020) · doi:10.3390/computation8020049
[45] F, Fractional-order delay differential equations for the dynamics of hepatitis C virus infection with IFN-\( \alpha\) treatment, Alex. Eng. J., 60, 4761-4774 (2021) · doi:10.1016/j.aej.2021.03.057
[46] J, Perspectives on the basic reproductive ratio, J. R. Soc. Interf., 2, 281-293 (2005) · doi:10.1098/rsif.2005.0042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.