×

Construction and comparative study of second order time stepping methods based on IQ and IMQ-RBFs. (English) Zbl 1501.65025

MSC:

65L12 Finite difference and finite volume methods for ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations

References:

[1] Sauer, T., Numerical Analysis (2012), New York: Pearson, New York · Zbl 1229.91347
[2] Butcher, JC, Numerical Methods for Ordinary Differential Equations (2008), Chichester, UK: John Wiley & Sons, Chichester, UK · Zbl 1167.65041 · doi:10.1002/9780470753767
[3] Gu, J.; Jung, JH, Adaptive radial basis function methods for initial value problems, J. Sci. Comput., 82, 47 (2020) · Zbl 1527.65061 · doi:10.1007/s10915-020-01140-0
[4] Gu, J.; Jung, JH, Adaptive Gaussian radial basis function methods for initial value problems: Construction and comparison with adaptive multi-quadric radial basis function methods, J. Comput. Appl. Math., 381, 113036 (2021) · Zbl 1455.65107 · doi:10.1016/j.cam.2020.113036
[5] Guo, J.; Jung, JH, A RBF-WENO finite volume method for hyperbolic conservation laws with the monotone polynomial interpolation method, J. Appl. Numer. Math., 112, 27-50 (2017) · Zbl 1354.65177 · doi:10.1016/j.apnum.2016.10.003
[6] Guo, J.; Jung, JH, Radial basis function ENO and WENO finite difference methods based on the optimization of shape parameters, J. Sci. Comput., 70, 551-575 (2017) · Zbl 1361.65055 · doi:10.1007/s10915-016-0257-y
[7] Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E., Quarteroni, A. (eds.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, 325-432. Springer (1998) · Zbl 0927.65111
[8] Rathan, S.; Raju, G. Naga, A modified fifth-order WENO scheme for hyperbolic conservation laws, Comput. Math. Appl., 75, 5, 1531-1549 (2018) · Zbl 1409.65056 · doi:10.1016/j.camwa.2017.11.020
[9] Rathan, S.; Raju, G. Naga, Improved weighted ENO scheme based on parameters involved in nonlinear weights, Appl. Math. Comput., 331, 120-129 (2018) · Zbl 1427.65180 · doi:10.1016/j.amc.2018.03.034
[10] Rathan, S.; Kumar, R.; Jagtap, AD, L1-type smoothness indicators based WENO scheme for nonlinear degenerate parabolic equations, Appl. Math. Comput., 375, 125112 (2020)
[11] Ditkowski, A.; Gottlieb, S., Error inhibiting block one-step schemes for ordinary differential equations, J. Sci. Comput., 73, 691-711 (2017) · Zbl 1381.65062 · doi:10.1007/s10915-017-0441-8
[12] Gu, J., Jung, J.H.: An improved error inhibiting block one-step method with radial basis function approximation. In: Sherwin, S.J., Moxey, D., Peiro, J., Vincent, P.E., Schwab, C. (eds.) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018. Lecture Notes in Computational and Engineering Sciences. Springer (2020, in press)
[13] Nikan, O.; Avazzadeh, Z.; Machado, JT, Numerical simulation of a degenerate parabolic problem occurring in the spatial diffusion of biological population, Chaos, Solitons & Fractals, 151, 111220 (2021) · Zbl 1498.92004 · doi:10.1016/j.chaos.2021.111220
[14] Nikan, O.; Avazzadeh, Z., An efficient localized meshless technique for approximating nonlinear sinh-Gordon equation arising in surface theory, Engineering Analysis with Boundary Elements, 130, 268-285 (2021) · Zbl 1521.65104 · doi:10.1016/j.enganabound.2021.05.019
[15] Nikan, O.; Avazzadeh, Z.; Machado, JT, Numerical treatment of microscale heat transfer processes arising in thin films of metals, International Communications in Heat and Mass Transfer, 132, 105892 (2022) · doi:10.1016/j.icheatmasstransfer.2022.105892
[16] Nikan, O.; Avazzadeh, Z., Coupling of the Crank-Nicolson scheme and localized meshless technique for viscoelastic wave model in fluid flow, Journal of Computational and Applied Mathematics, 398, 113695 (2021) · Zbl 1486.65205 · doi:10.1016/j.cam.2021.113695
[17] Fasshauer, GE; Zhang, JG, On choosing “optimal” shape parameters for RBF approximation, J. Sci. Comput., 45, 345-368 (2007) · Zbl 1127.65009
[18] Fornberg, B.; Weight, G.; Larsson, E., Some observations regarding interpolants in the limit of flat radial basis functions, Comput. Math. Appl., 47, 37-55 (2004) · Zbl 1048.41017 · doi:10.1016/S0898-1221(04)90004-1
[19] Rippa, S., An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Adv. Comput. Math., 11, 193-210 (1999) · Zbl 0943.65017 · doi:10.1023/A:1018975909870
[20] Schback, R., Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math., 3, 251-264 (1995) · Zbl 0861.65007 · doi:10.1007/BF02432002
[21] Dahlquist, G., Convergence and stability in the numerical integration of ordinary differential equations, Math. Scand., 4, 33-53 (1956) · Zbl 0071.11803 · doi:10.7146/math.scand.a-10454
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.