×

Nonlocal complement value problem for a global in time parabolic equation. (English) Zbl 1501.35130

Summary: The overreaching goal of this paper is to investigate the existence and uniqueness of weak solution of a semilinear parabolic equation with double nonlocality in space and in time variables that naturally arises while modeling a biological nano-sensor in the chaotic dynamics of a polymer chain. In fact, the problem under consideration involves a symmetric integrodifferential operator of Lévy type and a term called the interaction potential, that depends on the time-integral of the solution over the entire interval of solving the problem. Owing to the Galerkin approximation, the existence and uniqueness of a weak solution of the nonlocal complement value problem is proven for small time under fair conditions on the interaction potential.

MSC:

35D40 Viscosity solutions to PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35R09 Integro-partial differential equations
47G20 Integro-differential operators

References:

[1] Applebaum, D., Lévy Processes and Stochastic Calculus (2009), Cambridge University Press · Zbl 1200.60001 · doi:10.1017/CBO9780511809781
[2] Antil, H., Warma, M.: Optimal control of fractional semilinear PDEs. ESAIM Control Optim. Calc. Var. 26(5), 30 (2020) · Zbl 1439.49008
[3] Brézis, H.; Browder, FE, Strongly nonlinear elliptic boundary value problems, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 5, 3, 587-603 (1978) · Zbl 0453.35029
[4] Bertoin, J., Lévy Processes (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0861.60003
[5] Boyer, F.; Fabrie, P., Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models (2013), Berlin: Springer, Berlin · Zbl 1286.76005
[6] Bucur, C.; Valdinoci, E., Nonlocal Diffusion and Applications (2016), Berlin: Springer, Berlin · Zbl 1377.35002
[7] Cheney, W., Analysis for Applied Mathematics (2013), Berlin: Springer, Berlin · Zbl 0984.46006
[8] Chen, W., Li, Y., Ma, P.P.: The Fractional Laplacian. World Scientific Publishing Co. Pte. Ltd., Hackensack (2020) · Zbl 1451.35002
[9] Cozzi, M., Interior regularity of solutions of nonlocal equations in Sobolev and Nikol’skii spaces, Annali di Matematica Pura ed Applicata (1923-), 196, 2, 555-578 (2017) · Zbl 1371.35312 · doi:10.1007/s10231-016-0586-3
[10] Caffarelli, LA; Roquejoffre, J-M; Sire, Y., Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12, 5, 1151-1179 (2010) · Zbl 1221.35453 · doi:10.4171/JEMS/226
[11] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, 8, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[12] Cannarsa, P.; Sforza, D., Integro-differential equations of hyperbolic type with positive definite kernels, J. Differ. Equ., 250, 12, 4289-4335 (2011) · Zbl 1218.45010 · doi:10.1016/j.jde.2011.03.005
[13] Dyda, B.; Kassmann, M., Regularity estimates for elliptic nonlocal operators, Anal. PDE, 13, 2, 317-370 (2020) · Zbl 1437.35175 · doi:10.2140/apde.2020.13.317
[14] Du, Q., Mengesha, T., Tian, X.: Nonlocal criteria for compactness in the space of \({\mathbf{L}}^p\) vector fields (2018). arXiv:1801.08000
[15] Djida, J-D; Nieto, JJ; Area, I., Nonlocal time-porous medium equation: weak solutions and finite speed of propagation, Discrete Contin. Dyn. Syst. Ser. B, 24, 8, 4031-4053 (2019) · Zbl 1420.35122
[16] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[17] Dipierro, S.; Ros-Oton, X.; Valdinoci, E., Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam., 33, 2, 377-416 (2017) · Zbl 1371.35322 · doi:10.4171/RMI/942
[18] Evans, LC, Partial Differential Equations (2010), New York: American Mathematical Society, New York · Zbl 1194.35001
[19] Gounoue, GFF; Kassmann, M.; Voigt, P., Mosco convergence of nonlocal to local quadratic forms, Nonlinear Anal., 193, 111504, 22 (2020) · Zbl 1437.49027
[20] Felsinger, M.; Kassmann, M., Local regularity for parabolic Nonlocal operators, Commun. Partial Differ. Equ., 38, 9, 1539-1573 (2013) · Zbl 1277.35090 · doi:10.1080/03605302.2013.808211
[21] Foghem, G., Kassmann, M.: A general framework for nonlocal Neumann problems (2022). arxiv:2204.06793
[22] Felsinger, M.; Kassmann, M.; Voigt, P., The Dirichlet problem for nonlocal operators, Math. Z, 279, 779-809 (2015) · Zbl 1317.47046 · doi:10.1007/s00209-014-1394-3
[23] Foghem, G.: \(L^2\)-theory for nonlocal operators on domains. Ph.D. thesis, Bielefeld University (2020). doi:10.4119/unibi/2946033
[24] Foghem, G.: Nonlocal Gagliardo-Nirenberg-Sobolev type inequality (2021). doi:10.48550/arXiv.2105.07989
[25] Foghem, G.: A remake on the Bourgain-Brezis-Mironescu characterization of Sobolev spaces (2021). doi:10.48550/arXiv.2008.07631
[26] Fernández-Real, X.; Ros-Oton, X., Regularity theory for general stable operators: parabolic equations, J. Funct. Anal., 272, 10, 4165-4221 (2017) · Zbl 1372.35058 · doi:10.1016/j.jfa.2017.02.015
[27] Garofalo, N.: Fractional thoughts. In New developments in the analysis of nonlocal operators. Volume 723 of Contemporary Mathematics, pp. 1-135. American Mathematical Society, Providence (2019) · Zbl 1423.35397
[28] Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien, Band 38. Akademie-Verlag, Berlin (1974) · Zbl 0289.47029
[29] Gossez, J-P, Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs, J. Math. Anal. Appl., 34, 371-395 (1971) · Zbl 0228.47040 · doi:10.1016/0022-247X(71)90119-3
[30] Hess, P., A strongly nonlinear elliptic boundary value problem, J. Math. Anal. Appl., 43, 1, 241-249 (1973) · Zbl 0267.35039 · doi:10.1016/0022-247X(73)90272-2
[31] James, RC, Weak compactness and reflexivity, Isr. J. Math., 2, 101-119 (1964) · Zbl 0127.32502 · doi:10.1007/BF02759950
[32] Janno, J.; Lorenzi, A., Recovering memory kernels in parabolic transmission problems, J. Inverse Ill-Posed Probl., 16, 3, 239-265 (2008) · Zbl 1158.45008 · doi:10.1515/JIIP.2008.015
[33] Jarohs, S.; Weth, T., Local compactness and nonvanishing for weakly singular nonlocal quadratic forms, Nonlinear Anal., 193, 111431, 15 (2020) · Zbl 1444.47064
[34] Kato, T., Perturbation Theory for Linear Operators (2013), Berlin: Springer, Berlin
[35] Khamsi, M.A., Kirk, W.A.: An introduction to metric spaces and fixed point theory. Pure Appl. Math. (N. Y.). Wiley-Interscience, New York (2001) · Zbl 1318.47001
[36] Kassmann, M.; Schwab, RW, Regularity results for nonlocal parabolic equations, Riv. Math. Univ. Parma (N.S.), 5, 1, 183-212 (2014) · Zbl 1329.35095
[37] Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calculus Appl. Anal. 20(1) (2017) · Zbl 1375.47038
[38] Lischke, A.; Pang, G.; Gulian, M., What is the fractional Laplacian? A comparative review with new results, J. Comput. Phys., 404, 109009, 62 (2020) · Zbl 1453.35179
[39] Leonori, T.; Peral, I.; Primo, A.; Soria, F., Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35, 12, 6031-6068 (2015) · Zbl 1332.45009 · doi:10.3934/dcds.2015.35.6031
[40] Ma, Z-M; Röckner, M., Introduction to the Theory of (Non-symmetric) Dirichlet Forms (2012), Berlin: Springer, Berlin · Zbl 0826.31001
[41] Pao, CV, Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions, J. Math. Anal. Appl., 195, 3, 702-718 (1995) · Zbl 0851.35063 · doi:10.1006/jmaa.1995.1384
[42] Ponce, A.C.: Elliptic PDEs, measures and capacities. Tracts Math. 23 (2016) · Zbl 1357.35003
[43] Ros-Oton, X., Nonlocal elliptic equations in bounded domains: a survey, Publicacions Matemàtiques, 60, 1, 3-26 (2016) · Zbl 1337.47112 · doi:10.5565/PUBLMAT_60116_01
[44] Ros-Oton, X.; Serra, J., The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101, 3, 275-302 (2014) · Zbl 1285.35020 · doi:10.1016/j.matpur.2013.06.003
[45] Rutkowski, A., The Dirichlet problem for nonlocal Lévy-type operators, Publicacions Matemàtiques, 62, 1, 213-251 (2018) · Zbl 1391.35444 · doi:10.5565/PUBLMAT6211811
[46] Sato, K.: Lévy Processes and Infinitely Divisible Distributions, Volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2013) (Translated from the 1990 Japanese original, Revised edition of the 1999 English translation) · Zbl 1287.60003
[47] Shelukhin, VV, A problem with time-average data for nonlinear parabolic equations, Siber. Math. J., 32, 2, 309-320 (1991) · Zbl 0764.35049 · doi:10.1007/BF00972778
[48] Starovoitov, V.N., Starovoitova, B.N.: Modeling the dynamics of polymer chains in water solution. Application to sensor design. J. Phys. Conf. Ser. 894, 012088 (2017)
[49] Starovoitov, VN, Initial boundary value problem for a nonlocal in time parabolic equation, Siber. Electron. Math. Rep., 15, 1311-1319 (2018) · Zbl 1401.35198
[50] Starovoitov, VN, Boundary value problem for a global-in-time parabolic equation, Math. Methods Appl. Sci., 44, 1, 1118-1126 (2021) · Zbl 1469.35124 · doi:10.1002/mma.6816
[51] Tychonoff, A., Ein Fixpunktsatz, Mathematische Annalen, 111, 1, 767-776 (1935) · Zbl 0012.30803 · doi:10.1007/BF01472256
[52] Van Bockstal, K.; De Staelen, RH; Slodička, M., Identification of a memory kernel in a semilinear integrodifferential parabolic problem with applications in heat conduction with memory, J. Comput. Appl. Math., 289, 196-207 (2015) · Zbl 1319.35305 · doi:10.1016/j.cam.2015.02.019
[53] Warma, M., The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42, 2, 499-547 (2015) · Zbl 1307.31022 · doi:10.1007/s11118-014-9443-4
[54] Zhu, B., Han, B.: Existence and uniqueness of mild solutions for fractional partial integro-differential equations. Mediterr. J. Math. 17(4), 12 (2020) (Id/No 113) · Zbl 1452.35248
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.