×

Radially symmetric solutions for quasilinear elliptic equations involving nonhomogeneous operators in an Orlicz-Sobolev space setting. (English) Zbl 1499.35244

Summary: We investigate the following elliptic equations: \[ \begin{cases} - M\left(\int_{\mathbb{R}^N}\phi(|\nabla u|^2)\mathrm{d}x\right)\operatorname{div}(\phi^\prime(|\nabla u|^2)\nabla u) + |u|^{\alpha - 2}u = \lambda h(x,u),\\ u(x)\to 0,\quad\text{as }|x| \to \infty , \end{cases}\quad\text{in }\mathbb{R}^N, \] where \(N \geq 2\), \(1 < p < q < N\), \(\alpha < q\), \(1 < \alpha < p^\ast q^\prime/p^\prime\) with \(p^\ast = \frac{Np}{N - p}\), \(\phi(t)\) behaves like \(t^{q/2}\) for small \(t\) and \(t^{p/2}\) for large \(t\), and \(p^\prime\) and \(q^\prime\) are the conjugate exponents of \(p\) and \(q\), respectively. We study the existence of nontrivial radially symmetric solutions for the problem above by applying the mountain pass theorem and the fountain theorem. Moreover, taking into account the dual fountain theorem, we show that the problem admits a sequence of small-energy, radially symmetric solutions.

MSC:

35J50 Variational methods for elliptic systems
35J62 Quasilinear elliptic equations
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] Ait-Mahiout, K.; Alves, C. O., Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz-Sobolev spaces, Complex Var Elliptic Equ, 62, 767-785 (2017) · Zbl 1378.35135 · doi:10.1080/17476933.2016.1243669
[2] Alves C O, da Silva A R. Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz-Sobolev space. J Math Phys, 2016, 57: 111502 · Zbl 1367.35082
[3] Alves, C. O.; Liu, S. B., On superlinear p(x)-Laplacian equations in ℝ^N, Nonlinear Anal, 73, 2566-2579 (2010) · Zbl 1194.35142 · doi:10.1016/j.na.2010.06.033
[4] Ambrosetti, A.; Rabinowitz, P., Dual variational methods in critical point theory and applications, J Funct Anal, 14, 349-381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[5] Azzollini, A., Minimum action solutions for a quasilinear equation, J Lond Math Soc, 92, 583-595 (2015) · Zbl 1333.35071 · doi:10.1112/jlms/jdv050
[6] Azzollini, A.; d’Avenia, P.; Pomponio, A., Quasilinear elliptic equations in ℝ^N via variational methods and Orlicz-Sobolev embeddings, Calc Var Partial Differential Equations, 49, 197-213 (2014) · Zbl 1285.35039 · doi:10.1007/s00526-012-0578-0
[7] Badiale, M.; Pisani, L.; Rolando, S., Sum of weighted Lebesgue spaces and nonlinear elliptic equations, NoDEA Nonlinear Differ Equ Appl, 18, 369-405 (2011) · Zbl 1234.35102 · doi:10.1007/s00030-011-0100-y
[8] Bahrouni, A.; Radulescu, V. D.; Repovs, D. D., Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves, Nonlinearity, 32, 7, 2481-2495 (2019) · Zbl 1419.35056 · doi:10.1088/1361-6544/ab0b03
[9] Bartsch, T.; Willem, M., On an elliptic equation with concave and convex nonlinearities, Proc Amer Math Soc, 123, 3555-3561 (1995) · Zbl 0848.35039 · doi:10.1090/S0002-9939-1995-1301008-2
[10] Bonanno, G.; Molica Bisci, G.; Rädulescu, V., Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces, Nonlinear Anal, 74, 4785-4795 (2011) · Zbl 1220.35043 · doi:10.1016/j.na.2011.04.049
[11] Cencelj, M.; Radulescu, V. D.; Repovs, D. D., Double phase problems with variable growth, Nonlinear Anal, 177, 270-287 (2018) · Zbl 1421.35235 · doi:10.1016/j.na.2018.03.016
[12] Chorfi, N.; Radulescu, V. D., Standing waves solutions of a quasilinear degenerate Schröinger equation with unbounded potential, Electron J Qual Theory Differ Equ, 2016, 1-12 (2016) · Zbl 1363.35117 · doi:10.14232/ejqtde.2016.1.37
[13] Chung, N. T., Existence of solutions for a class of Kirchhoff type problems in Orlicz-Sobolev spaces, Ann Polon Math, 113, 283-294 (2015) · Zbl 1326.35105 · doi:10.4064/ap113-3-5
[14] Clement, P.; García-Huidobro, M.; Manasevich, R.; Schmitt, K., Mountain pass type solutions for quasilinear elliptic equations, Calc Var Partial Differential Equations, 11, 33-62 (2000) · Zbl 0959.35057 · doi:10.1007/s005260050002
[15] Clement, P.; de Pagter, B.; Sweers, G.; de Thelin, F., Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr J Math, 1, 241-267 (2004) · Zbl 1167.35352 · doi:10.1007/s00009-004-0014-6
[16] Dai, G.; Hao, R., Existence of solutions for a p(x)-Kirchhoff-type equation, J Math Anal Appl, 359, 275-284 (2009) · Zbl 1172.35401 · doi:10.1016/j.jmaa.2009.05.031
[17] Fabian, M.; Habala, P.; Hajk, P.; Montesinos, V.; Zizler, V., Banach Space Theory: the Basis for Linear and Nonlinear Analysis (2011), New York: Springer, New York · Zbl 1229.46001 · doi:10.1007/978-1-4419-7515-7
[18] Fang, F.; Tan, Z., Existence and multiplicity of solutions for a class of quasilinear elliptic equations: an Orlicz-Sobolev space setting, J Math Anal Appl, 389, 420-428 (2012) · Zbl 1236.35065 · doi:10.1016/j.jmaa.2011.11.078
[19] Fang, F.; Tan, Z., Existence of three solutions for quasilinear elliptic equations: an Orlicz-Sobolev space setting, Acta Math Appl Sin Engl Ser, 33, 287-296 (2017) · Zbl 1370.35099 · doi:10.1007/s10255-017-0659-0
[20] Figueiredo, G.; Santos, J. A., Existence of least energy nodal solution with two nodal domains for a generalized Kirchhoff problem in an Orlicz-Sobolev space, Math Nachr, 290, 583-603 (2017) · Zbl 1362.35124 · doi:10.1002/mana.201500286
[21] Fiscella, A., A fractional Kirchhoff problem involving a singular term and a critical nonlinearity, Adv Nonlinear Anal, 8, 1, 645-660 (2019) · Zbl 1419.35035 · doi:10.1515/anona-2017-0075
[22] Frehse, J.; Seregin, G. A., Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening, Proc St Petersburg Math Soc, 5, 184-222 (1998) · Zbl 0973.74033
[23] Fuchs, M.; Osmolovki, V., Variational integrals on Orlicz-Sobolev spaces, Z Anal Anwend, 17, 393-415 (1998) · Zbl 0913.49023 · doi:10.4171/ZAA/829
[24] Fuchs, M.; Seregin, G., Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening, Math Methods Appl Sci, 22, 317-351 (1999) · Zbl 0928.76087 · doi:10.1002/(SICI)1099-1476(19990310)22:4<317::AID-MMA43>3.0.CO;2-A
[25] Fukagai, N.; Narukawa, K., Nonlinear eigenvalue problem for a model equation of an elastic surface, Hiroshima Math J, 25, 19-41 (1995) · Zbl 0836.35112 · doi:10.32917/hmj/1206127823
[26] Fukagai, N.; Narukawa, K., On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Ann Mat Pura Appl, 186, 539-564 (2007) · Zbl 1223.35132 · doi:10.1007/s10231-006-0018-x
[27] Gossez, J. P., A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces, 455-462 (1986), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0602.35037
[28] He, C.; Li, G., The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to u^p−1 at infinity in ℝ^N, Nonlinear Anal, 68, 1100-1119 (2008) · Zbl 1148.35024 · doi:10.1016/j.na.2006.12.008
[29] Jeanjean, L., On the existence of bounded Palais-Smale sequences and application to a Landsman-Lazer type problem set on ℝ^N, Proc Roy Soc Edinburgh, 129, 787-809 (1999) · Zbl 0935.35044 · doi:10.1017/S0308210500013147
[30] Kim, J-M; Kim, Y-H; Lee, J., Existence and multiplicity of solutions for Kirchhoff-Schrödinger type equations involving p(x)-Laplacian on the whole space, Nonlinear Anal Real World Appl, 45, 620-649 (2019) · Zbl 1412.35119 · doi:10.1016/j.nonrwa.2018.07.016
[31] Kim, J-M; Kim, Y-H; Lee, J., Existence of weak solutions to a class of Schrödinger type equations involving the fractional p-Laplacian in ℝ^N, J Korean Math Soc, 563, 6, 1529-1560 (2019) · Zbl 1427.35326
[32] Lee, S. D.; Park, K.; Kim, Y-H, Existence and multiplicity of solutions for equations involving nonhomogeneous operators of p-Laplace type in ℝ^N, Bound Value Probl, 2014, 261 (2014) · Zbl 1316.35139 · doi:10.1186/s13661-014-0261-9
[33] Lin, X.; Tang, X. H., Existence of infinitely many solutions for p-Laplacian equations in ℝ^N, Nonlinear Anal, 92, 72-81 (2013) · Zbl 1308.35074 · doi:10.1016/j.na.2013.06.011
[34] Liu, S. B., On ground states of superlinear p-Laplacian equations in ℝ^N, J Math Anal Appl, 361, 48-58 (2010) · Zbl 1178.35174 · doi:10.1016/j.jmaa.2009.09.016
[35] Liu, S. B., On superlinear problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal, 73, 788-795 (2010) · Zbl 1192.35074 · doi:10.1016/j.na.2010.04.016
[36] Liu, S. B.; Li, S. J., Infinitely many solutions for a superlinear elliptic equation, Acta Math Sinica (Chin Ser), 46, 625-630 (2003) · Zbl 1081.35043
[37] Mihailescu, M.; Radulescu, V., Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting, J Math Anal Appl, 330, 416-432 (2007) · Zbl 1176.35071 · doi:10.1016/j.jmaa.2006.07.082
[38] Miyagaki, O. H.; Juarez Hurtado, E.; Rodrigues, R. S., Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions, J Dyn Differ Equ, 30, 405-432 (2018) · Zbl 1400.35126 · doi:10.1007/s10884-016-9542-6
[39] Miyagaki, O. H.; Souto, M. A S., Superlinear problems without Ambrosetti and Rabinowitz growth condition, J Differ Equ, 245, 3628-3638 (2008) · Zbl 1158.35400 · doi:10.1016/j.jde.2008.02.035
[40] Molica Bisci, G.; Radulescu, V. D., Multiplicity results for elliptic fractional equations with subcritical term, Nonlinear Differ Equ Appl, 22, 4, 721-739 (2015) · Zbl 1322.49025 · doi:10.1007/s00030-014-0302-1
[41] Mukherjee, T.; Sreenadh, K., On Dirichlet problem for fractional p-Laplacian with singular non-linearity, Adv Nonlinear Anal, 8, 1, 52-72 (2019) · Zbl 1418.35365 · doi:10.1515/anona-2016-0100
[42] Palais, R., The principle of symmetric criticality, Comm Math Phys, 69, 19-30 (1979) · Zbl 0417.58007 · doi:10.1007/BF01941322
[43] Z Angew Math Phys2018694Art 108, 21 pp
[44] Papageorgiou, N. S.; Radulescu, V. D.; Repovs, D. D., Double-phase problems and a discontinuity property of the spectrum, Proc Amer Math Soc, 147, 7, 2899-2910 (2019) · Zbl 1423.35289 · doi:10.1090/proc/14466
[45] Pucci, P.; Xiang, M.; Zhang, B., Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in ℝ^N, Calc Var Partial Differ Equ, 54, 2785-2806 (2015) · Zbl 1329.35338 · doi:10.1007/s00526-015-0883-5
[46] Radulescu, V. D., Isotropic and anisotropic double-phase problems: old and new Opuscula, Mathematica, 39, 259-279 (2019) · Zbl 1437.35315
[47] Ragusa, M. A.; Tachikawa, A., Regularity for minimizers for functionals of double phase with variable exponents, Adv Nonlinear Anal, 9, 1, 710-728 (2020) · Zbl 1420.35145 · doi:10.1515/anona-2020-0022
[48] Rao, M. M.; Ren, Z. D., Theory of Orlicz Spaces (1991), New York: Marcel Dekker Inc, New York · Zbl 0724.46032
[49] Rubshtein, B-Z A.; Grabarnik, G. Y.; Muratov, M. A.; Pashkova, Y. S., Foundations of symmetric spaces of measurable functions//Lorentz, Marcinkiewicz and Orlicz spaces (2016), Cham: Springer, Cham · Zbl 1361.42001 · doi:10.1007/978-3-319-42758-4
[50] Santos, J. A.; Soares, S. H M., Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces, J Math Anal Appl, 428, 1035-1053 (2015) · Zbl 1318.35042 · doi:10.1016/j.jmaa.2015.03.030
[51] Teng, K., Multiple solutions for a class of fractional Schrödinger equations in ℝ^N, Nonlinear Anal Real World Appl, 21, 76-86 (2015) · Zbl 1302.35415 · doi:10.1016/j.nonrwa.2014.06.008
[52] Willem, M., Minimax Theorems (1996), Basel: Birkhauser, Basel · Zbl 0856.49001 · doi:10.1007/978-1-4612-4146-1
[53] Xiang, M.; Radulescu, V. D.; Zhang, B., Existence of solutions for a bi-nonlocal fractional p-Kirchhoff type problem, Comput Math Appl, 71, 1, 255-266 (2016) · Zbl 1443.35178 · doi:10.1016/j.camwa.2015.11.017
[54] Xiang, M.; Radulescu, V. D.; Zhang, B., Combined effects for fractional Schrödinger-Kirchhoff systems with critical nonlinearities, ESAIM Control Optim Calc Var, 24, 3, 1249-1273 (2018) · Zbl 1453.35184 · doi:10.1051/cocv/2017036
[55] Zang, A., p(x)-Laplacian equations satisfying Cerami condition, J Math Anal Appl, 337, 547-555 (2008) · Zbl 1216.35065 · doi:10.1016/j.jmaa.2007.04.007
[56] Zhang, Q.; Radulescu, V. D., Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J Math Pures Appl, 118, 9, 159-203 (2018) · Zbl 1404.35191 · doi:10.1016/j.matpur.2018.06.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.