×

Pool-rewarding in \(N\)-person snowdrift game. (English) Zbl 1498.91057

Summary: We extend the \(N\)-person snowdrift game (NSG) to incorporate the effects of pool rewarding. An individual who chooses to reward pays a certain cost to provide additional benefits to cooperative behaviors. Thus, rewarding can be considered as a second-order altruistic behavior. But rewarders are actually indirectly protected by defectors as system dynamics evolves. Both the well-mixed version of NSG and the spatial game have been investigated. For well-mixed population, increasing the synergy factor of rewarding \(r_2\) facilitates the formation of an oscillating state, while the increment of NSG synergy factor \(r_1\) promotes the transition from the stable closed orbit to a fixed state of the system. For structured population, dynamic diversity is dramatically enriched. Especially, the existence of rewarders makes “cooperation monopolization” (the domination of cooperators or rewarders) emerge under feasible parameters. Moreover, for small reward cost, the system dynamics can converge to the absorbing state of rewarding even when the \(r_2\) value is low. Larger reward cost, however, is not conducive to the prevalence of rewarding, but dramatically promotes second-order free-riding. Based on this study, we hope to provide guidance for the future research of positive incentives in NSG.

MSC:

91A22 Evolutionary games
Full Text: DOI

References:

[1] Nowak, M. A., Five rules for the evolution of cooperation, Science, 314, 1560-1563 (2006)
[2] Nowak, M. A.; Sasaki, A.; Taylor, C.; Fudenberg, D., Emergence of cooperation and evolutionary stability in finite populations, Nature, 428, 646-650 (2004)
[3] Mitchell, W. C.; Axelrod, R., The evolution of cooperation, Am Polit Sci Rev, 79, 287-288 (1985)
[4] Smith, J. M.; Price, G. R., The logic of animal conflict, Nature, 246, 15-18 (1973) · Zbl 1369.92134
[5] Chen, W.; Wu, T.; Li, Z. W.; Wang, L., Friendship-based partner switching promotes cooperation in heterogeneous populations, Physica A, 443, 192-199 (2016)
[6] Nowak, M. A.; May, R. M., Evolutionary games and spatial chaos, Nature, 359, 826-829 (1992)
[7] Wang, X. F.; Chen, X. J.; Wang, L., Evolution of egalitarian social norm by resource management, PLoS One, 15, e0227902 (2020)
[8] Dawes, R. M.; Messick, D. M., Social dilemmas, Int J Psychol, 35, 111-116 (2000)
[9] Macy, M. W.; Flache, A., Learning dynamics in social dilemmas, Proc Natl Acad Sci U S A, 99, 7229-7236 (2002) · Zbl 1355.91014
[10] Li, K.; Cong, R.; Wu, T.; Wang, L., Social exclusion in finite populations, Phys Rev E, 91, 042810 (2015)
[11] Lewontin, R. C., Evolution and the theory of games, J Theor Biol, 1, 382-403 (1961)
[12] Yang, L.; Li, Z. W.; Glua, A., Containment of rumor spread in complex social networks, Inf Sci, 506, 113-130 (2020)
[13] Wang, B. K.; Pei, Z. H.; Wang, L., Evolutionary dynamics of cooperation on interdependent networks with the prisoner’s dilemma and snowdrift game, EPL, 107, 5 (2014)
[14] Wang, B. K.; Pei, Z. H.; Wang, L., Evolutionary stable strategies and game dynamics, Math Biosci, 40, 145-156 (1978) · Zbl 0395.90118
[15] Roca, C. P.; Cuesta, J. A.; Sánchez, A., Evolutionary game theory: temporal and spatial effects beyond replicator dynamics, Phys Life Rev, 6, 208-249 (2009)
[16] Wang, Z.; Jusup, M.; Shi, L.; Lee, J. H.; Iwasa, Y.; Boccaletti, S., Exploiting a cognitive bias promotes cooperation in social dilemma experiments, Nat Commun, 9, 2954 (2018)
[17] Sugden, R., The economics of rights, cooperation and welfare (1986), Palgrave Macmillan Press: Palgrave Macmillan Press New York, NY
[18] Szolnoki, A.; Chen, X. J., Competition and partnership between conformity and payoff-based imitations in social dilemmas, New J Phys, 20, 093008 (2018)
[19] Wang, Z.; Szolnoki, A.; Perc, M., Different perceptions of social dilemmas: Evolutionary multigames in structured populations, Phys Rev E, 90, 032813 (2014)
[20] Perc, M.; Szolnoki, A., Coevolutionary games-a mini review, Biosystems, 99, 109-125 (2010)
[21] Doebeli, M.; Knowlton, N., The evolution of interspecific mutualisms, Proc Natl Acad Sci USA, 95, 8676-8680 (1998)
[22] Perc, M.; Jordan, J. J.; Rand, D. G.; Wang, Z.; Boccaletti, S.; Szolnoki, A., Statistical physics of human cooperation, Phys Rep, 687, 1-51 (2017) · Zbl 1366.80006
[23] Hauert, C.; Doebeli, M., Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature, 428, 643-646 (2004)
[24] Cong, R.; Wu, B.; Qiu, Y. Y.; Wang, L., Evolution of cooperation driven by reputation-based migration, PLoS One, 7, e35776 (2012)
[25] Li, K.; Szolnoki, A.; Cong, R.; Wang, L., The coevolution of overconfidence and bluffing in the resource competition game, Sci Rep, 6, 21104 (2016)
[26] Chen, W.; Gracia-Lázaro, C.; Li, Z. W.; Wang, L.; Moreno, Y., Evolutionary dynamics of n-person hawk-dove games, Sci Rep, 7, 4800 (2017)
[27] Falk, A.; Fischbacher, U., A theory of reciprocity, Games Econ Behav, 54, 293-315 (2006) · Zbl 1125.91023
[28] Chen, W.; Wu, T.; Li, Z. W.; Wang, L., Randomly biased investments and the evolution of public goods on interdependent networks, Physica A, 479, 542-550 (2017)
[29] Wang, X. F., Costly participation and the evolution of cooperation in the repeated public goods game, Dyn Games Appl (2020)
[30] Pei, Z. H.; Wang, B. K.; Du, J. M., Effects of income redistribution on the evolution of cooperation in spatial public goods games, New J Phys, 19, 013037 (2017)
[31] Souza, M. O.; Pacheco, J. M.; Santos, F. C., Evolution of cooperation under n-person snowdrift games, J Theor Biol, 260, 581-588 (2009) · Zbl 1402.91061
[32] Santos, M. D.; Pinheiro, F. L.; Santos, F. C.; Pacheco, J. M., Dynamics of n-person snowdrift games in structured populations, J Theor Biol, 315, 81-86 (2012) · Zbl 1397.91077
[33] Zheng, D. F.; Yin, H. P.; Chan, C. H.; Hui, P. M., Cooperative behavior in a model of evolutionary snowdrift games with n-person interactions, EPL, 80, 417-429 (2008)
[34] Chan, C. H.; Yin, H.; Hui, P. M.; Zheng, D. F., Evolution of cooperation in well-mixed n-person snowdrift games, Physica A, 387, 2919-2925 (2008)
[35] Sui, X. K.; Cong, R.; Li, K.; Wang, L., Evolutionary dynamics of n-person snowdrift game, Phys Lett A, 379, 2922-2934 (2015) · Zbl 1349.91046
[36] Lu, D. L.; Zhang, H. B.; Ge, J.; Xu, C., Cooperative enhancement of cost threshold in the spatial n-person snowdrift game, Chin Phys Lett, 29, 088901 (2012)
[37] Chen, X.; Wang, L., Effects of cost threshold and noise in spatial snowdrift games with fixed multi-person interactions, EPL, 90, 38003 (2010)
[38] Ji, M.; Xu, C.; Xu, P. M., Effects of dynamical grouping on cooperation in n-person evolutionary snowdrift game, Phys Rev E, 84, 036113 (2011)
[39] Ji, M.; Xu, C.; Zheng, D. F.; Hui, P. M., Enhanced cooperation and harmonious population in an evolutionary n-person snowdrift game, Physica A, 389, 1071-1076 (2010)
[40] Guo, H.; Song, Z.; Gecek, S.; Li, X. L.; Jusup, M.; Perc, M.; Moreno, Y.; Boccaletti, S.; Wang, Z., A novel route to cyclic dominance in voluntary social dilemmas, J R Soc Interface, 17, 20190789 (2020)
[41] Szolnoki, A.; Perc, M., Evolutionary dynamics of cooperation in neutral populations, New J Phys, 20, 013031 (2018) · Zbl 1540.91005
[42] Helbing, D.; Szolnoki, A.; Perc, M.; Szabó, G., Evolutionary establishment of moral and double moral standards through spatial interactions, PLoS Comput Biol, 6, e1000758 (2010)
[43] Szolnoki, A.; Mobilia, M.; Jiang, L. L.; Szczesny, B.; Rucklidge, A. M.; Perc, M., Cyclic dominance in evolutionary games: a review, J R Soc Interface, 11, 20140735 (2014)
[44] Sigmund, K.; Silva, H. D.; Traulsen, A.; Hauert, C., Social learning promotes institutions for governing the commons, Nature, 446, 861-863 (2010)
[45] Szolnoki, A.; Szabó, G.; Perc, M., Phase diagrams for the spatial public goods game with pool punishment, Phys Rev E, 83, 036101 (2011)
[46] Hauer, J. F.; Trudnowski, D. J.; Graham, R.; Mittelstadt, B., Evolutionary games and population dynamics, IEEE Comput Appl Power, 10, 50-54 (1997)
[47] Rand, D. G.; Greene, J. D.; Nowak, M. A., Spontaneous giving and calculated greed, Nature, 489, 7416 (2012)
[48] Szolnoki, A.; Perc, M., Evolutionary advantages of adaptive rewarding, New J Phys, 14, 093016 (2012)
[49] Zhang, Y. L.; Feng, F., Strategy intervention for the evolution of fairness, PLoS One, 13, e0196524 (2018)
[50] Wang, S. X.; Chen, X. J.; Szolnoki, A., Exploring optimal institutional incentives for public cooperation, Commun Nonlinear Sci Numer Simul, 79, 104914 (2019) · Zbl 1508.49009
[51] Gao, L.; Wang, Z.; Pansini, R.; Li, Y. T.; Wang, R. W., Collective punishment is more effective than collective reward for promoting cooperation, Sci Rep, 5, 17752 (2015)
[52] Szolnoki, A.; Perc, M., Second-order free-riding on antisocial punishment restores the effectiveness of prosocial punishment, Phys Rev X, 7, 041027 (2017)
[53] Chen, X. J.; Szolnoki, A., Punishment and inspection for governing the commons in a feedback-evolving game, PLoS Comput Biol, 14, e1006347 (2018)
[54] Sasaki, T.; Unemi, T., Replicator dynamics in public goods games with reward funds, J Theor Biol, 287, 109-114 (2011) · Zbl 1397.91078
[55] Sasaki, T.; Brännström, A.; Dieckmann, U.; Sigmund, K., The take-it-or-leave-it option allows small penalties to overcome social dilemmas, Proc Natl Acad Sci U S A, 109, 1165-1169 (2012) · Zbl 1355.91045
[56] Hauert, C., Replicator dynamics of reward & reputation in public goods games, J Theor Biol, 267, 22-28 (2010) · Zbl 1410.91073
[57] Szolnoki, A.; Perc, M., Antisocial pool rewarding does not deter public cooperation, Proc R Soc B-Biol Sci, 282, 20151975 (2015)
[58] Wang, Z.; Szolnoki, A.; Perc, M., Rewarding evolutionary fitness with links between populations promotes cooperation, J Theor Biol, 349, 50-56 (2014) · Zbl 1412.91016
[59] Tőke, C.; Szabò, G., Evolutionary prisoner’s dilemma game on a square lattice, Phys Rev E, 58, 69 (1998)
[60] Chen, X. J.; Szolnoki, A.; Perc, M., Competition and cooperation among different punishing strategies in the spatial public goods game, Phys. Rev. E, 92, 012819 (2015)
[61] Li, K.; Wei, Z. L.; Cong, R., Sentiment contagion dilutes prisoner’s dilemmas on social networks, EPL, 128, 38002 (2019)
[62] Szolnoki, A.; Xie, N. G.; Ye, Y.; Perc, M., Evolution of emotions on networks leads to the evolution of cooperation in social dilemmas, Phys Rev E, 87, 042805 (2013)
[63] G, S.; Hauert, C., Phase transitions and volunteering in spatial public goods games, Phys Rev Lett, 89, 118101 (2002)
[64] Xu, M.; Zhang, D. F.; Xu, C.; Zhong, L. X.; Hui, P. M., Cooperative behavior in n-person evolutionary snowdrift games with punishment, Physica A, 424, 322-329 (2015) · Zbl 1400.91086
[65] Xu, M.; Zhang, D. F.; Xu, C.; Hui, P. M., Three-strategy nperson snowdrift game incorporating loners, Physica A, 468, 454-461 (2016) · Zbl 1400.91085
[66] Zhang, Y. L.; Fu, F.; Chen, X. J.; Xie, G. M.; Wang, L., Cooperation in group-structured populations with two layers of interactions, Sci Rep, 5, 17446 (2015)
[67] Li, J. Q.; Zhang, C. Y.; Sun, Q. L.; Chen, Z. Q., Coevolution between strategy and social networks structure promotes cooperation, Chaos Soliton Fract, 77, 253-263 (2015) · Zbl 1353.91009
[68] Zhang, C. Y.; Zhang, J. L.; Weissing, F. J., The role of emotions in the maintenance of cooperative behaviors, EPL, 106, 18007 (2014)
[69] Perc, M.; Jordan, J. J.; Rand, D. G.; Wang, Z.; Boccaletti, S.; Szolnoki, A., Statistical physics of human cooperation, Phys Rep-Rev Sec Phys Lett, 687, 1-51 (2017) · Zbl 1366.80006
[70] Wang, X. F.; Duh, M.; Perc, M., Pool expulsion and cooperation in the spatial public goods game, Phys Lett A, 384, 126391 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.