×

Filter regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem with temporally dependent thermal conductivity. (English) Zbl 1498.35608

Summary: This paper concerns a backward problem for a nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity. Such a problem is obtained from the classical diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order \(\alpha \in (0, 2)\), which is usually used to model the anomalous diffusion. We show that the problem is severely ill-posed. Using the Fourier transform and a filter function, we construct a regularized solution from the data given inexactly and explicitly derive the convergence estimate in the case of the local Lipschitz reaction term. Special cases of the regularized solution are also presented. These results extend some earlier works on the space-fractional backward diffusion problem.

MSC:

35R25 Ill-posed problems for PDEs
35R30 Inverse problems for PDEs
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] H. Cheng, C.L. Fu, G.H. Zheng, J. Gao, A regularization for a Riesz-Feller space-fractional backward diffusion problem. Inverse Probl. Sci. Eng. 22, No 6 (2014), 860-872; DOI: 10.1080/17415977.2013.840298. · Zbl 1329.65208 · doi:10.1080/17415977.2013.840298
[2] H.F. Ding, Y.X. Zhang, New numerical methods for the Riesz space fractional partial differential equations. Comput. Math. Appl. 63, No 7 (2012), 1135-1146; DOI: 10.1016/j.camwa.2011.12.028. · Zbl 1247.65135 · doi:10.1016/j.camwa.2011.12.028
[3] H. Ding, C. Li, High-order algorithms for Riesz derivative and their applications. Fract. Calc. Appl. Anal. 19, No 1 (2016), 19-55; DOI: 10.1515/fca-2016-0003; https://www.degruyter.com/journal/key/FCA/19/1/html. · Zbl 1332.65122 · doi:10.1515/fca-2016-0003;
[4] H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems. Kluwer, Dordrecht (1996). · Zbl 0859.65054
[5] W. Feller, On a generalization of Marcel Riesz’ potentials and the semigroups generated by them. In: Meddelanden Lunds Universitets Matematiska Seminarium, Tome suppl. dédié a M. Riesz, Lund (1952), 73-81. · Zbl 0048.08503
[6] W. Feller, An Introduction to Probability Theory and its Applications. Vol. 2, 2nd Ed., Wiley, New York (1971). · Zbl 0219.60003
[7] R. Gorenflo, F. Mainardi, Some recent advances in theory and simulation of fractional diffusion processes. J. Comput. Appl. Math. 229, No 2 (2009), 400-415; DOI: 10.1016/j.cam.2008.04.005. · Zbl 1166.45004 · doi:10.1016/j.cam.2008.04.005
[8] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Fractional diffusion: probability distributions and random walk models. Phys. A: Stat. Mech. and its Appl. 305, No 1-2 (2002), 106-112; DOI: 10.1016/S0378-4371(01)00647-1. · Zbl 0986.82037 · doi:10.1016/S0378-4371(01)00647-1
[9] J. Hadamard, Lectures on Cauchy problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923). · JFM 49.0725.04
[10] D.N.D. Hai, D.D. Trong, Optimal error bound and truncation regularization method for a backward time-fractional diffusion problem in Hilbert scales. Appl. Math. Lett. 107 (2020), # 106448; DOI: 10.1016/j.aml.2020.106448. · Zbl 1440.65088 · doi:10.1016/j.aml.2020.106448
[11] D.N.D. Hai, N.H. Tuan, L.D. Long, L.G.Q. Thong, Inverse problem for nonlinear backward space-fractional diffusion equation. J. Inverse Ill-posed Probl. 25, No 4 (2017), 423-444; DOI: 10.1515/jiip-2015-0065. · Zbl 1370.35153 · doi:10.1515/jiip-2015-0065
[12] J. Kokila, M.T. Nair, Fourier truncation method for the non-homogeneous time-fractional backward heat conduction problem. Inverse Probl. Sci. Eng. 28, No 3 (2020), 402-426; DOI: 10.1080/17415977.2019.1580707. · Zbl 1466.35360 · doi:10.1080/17415977.2019.1580707
[13] F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, No 1 (2007), 12-20; DOI: 10.1016/j.amc.2006.08.162. · Zbl 1193.76093 · doi:10.1016/j.amc.2006.08.162
[14] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153-192. · Zbl 1054.35156
[15] S. Momani, Z. Odibat, V.S. Erturk, Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. Phys. Letters A, 370, No 5-6 (2007), 379-387; DOI: 10.1016/j.physleta.2007.05.083. · Zbl 1209.35066 · doi:10.1016/j.physleta.2007.05.083
[16] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). · Zbl 0516.47023
[17] S.S. Ray, A new approach for the application of Adomian decomposition method for the solution of fractional space diffusion equation with insulated ends. Appl. Math. Comput. 202, No 2 (2008), 544-549; DOI: 10.1016/j.amc.2008.02.043. · Zbl 1147.65107 · doi:10.1016/j.amc.2008.02.043
[18] S.S. Ray, K.S. Chaudhuri, R.K. Bera, Application of modified decomposition method for the analytical solution of space fractional diffusion equation. Appl. Math. Comput. 196, No 1 (2008), 294-302; DOI: 10.1016/j.amc.2007.05.048. · Zbl 1133.65119 · doi:10.1016/j.amc.2007.05.048
[19] C. Shi, C. Wang, G.H. Zheng, T. Wei, A new a posteriori parameter choice strategy for the convolution regularization of the space-fractional backward diffusion problem. J. Comput. Appl. Math. 279 (2015), 233-248; DOI: 10.1016/j.cam.2014.11.013. · Zbl 1310.65113 · doi:10.1016/j.cam.2014.11.013
[20] D.D. Trong, B.T. Duy, M.N. Minh, Backward heat equations with locally lipschitz source. Appl. Anal. 94, No 10 (2015), 2023-2036; DOI: 10.1080/00036811.2014.963063. · Zbl 1331.35393 · doi:10.1080/00036811.2014.963063
[21] D.D. Trong, D.N.D. Hai, N.D. Minh, Optimal regularization for an unknown source of space-fractional diffusion equation. Appl. Math. Comput. 349 (2019), 184-206; DOI: 10.1016/j.amc.2018.12.030. · Zbl 1429.65221 · doi:10.1016/j.amc.2018.12.030
[22] N.H. Tuan, D.N.D. Hai, L.D. Long, V.T. Nguyen, M. Kirane, On a Riesz - Feller space fractional backward diffusion problem with a nonlinear source. J. Comput. Appl. Math. 312 (2017), 103-126; DOI: 10.1016/j.cam.2016.01.003. · Zbl 1351.65069 · doi:10.1016/j.cam.2016.01.003
[23] F. Yang, X.X. Li, D.G. Li, L. Wang, The simplified Tikhonov regularization method for solving a Riesz-Feller space-Fractional backward diffusion problem. Math. Comput. Sci. 11, No 1 (2017), 91-110; DOI: 10.1007/s11786-017-0292-6. · Zbl 1516.35544 · doi:10.1007/s11786-017-0292-6
[24] F. Yang, C.L. Fu, X.X. Li, The inverse source problem for time-fractional diffusion equation: stability analysis and regularization. Inverse Probl. Sci. Eng. 23, No 6 (2015), 969-996; DOI: 10.1080/17415977.2014.968148. · Zbl 1329.35357 · doi:10.1080/17415977.2014.968148
[25] Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, No 1 (2010), 200-218; DOI: 10.1016/j.apm.2009.04.006. · Zbl 1185.65200 · doi:10.1016/j.apm.2009.04.006
[26] J. Zhao, S. Liu, T. Liu, An inverse problem for space-fractional backward diffusion problem. Math. Meth. Appl. Sci. 37, No 8 (2014), 1147-1158; DOI: 10.1002/mma.2876. · Zbl 1476.35340 · doi:10.1002/mma.2876
[27] G.H. Zheng, Solving the backward problem in Riesz-Feller fractional diffusion by a new nonlocal regularization method. Appl. Numer. Math. 135 (2019), 99-128; DOI: 10.1016/j.apnum.2018.08.008. · Zbl 1404.65147 · doi:10.1016/j.apnum.2018.08.008
[28] G.H. Zheng, T. Wei, Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem. Inverse Probl. 26 (2010), # 115017; DOI: 10.1088/0266-5611/26/11/115017. · Zbl 1206.65226 · doi:10.1088/0266-5611/26/11/115017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.