×

Localized nonlinear waves on spatio-temporally controllable backgrounds for a (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq model in water waves. (English) Zbl 1498.35482

Summary: Physics of nonlinear waves on variable backgrounds and the relevant mathematical analysis continues to be the challenging aspect of the study. In this work, we consider a (3+1)-dimensional nonlinear model describing the dynamics of water waves and construct nonlinear wave solutions on spatio-temporally controllable backgrounds for the first time by using a simple mathematical tool auto-Bäcklund transformation. Mainly, we unravel physically interesting features to control and manipulate the dynamics of nonlinear waves through the background. Adapting an exponential function and general polynomial of degree two as initial seed solutions, we construct single kink-soliton and rogue wave, respectively. We choose arbitrary periodic, localized and combined wave backgrounds by incorporating Jacobi elliptic functions and investigate the modulation of these two nonlinear waves with a clear analysis and graphical demonstrations. The solutions derived in this work give us sufficient freedom to generate exotic nonlinear coherent structures on variable backgrounds and open up an interesting direction to explore the dynamics of various other nonlinear waves propagating through inhomogeneous media.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Scott, A. C., Nonlinear science: emergence and dynamics of coherent structures (1999), Oxford University Press: Oxford University Press Oxford · Zbl 0927.35002
[2] Whitham, G. B., Linear and nonlinear waves (1974), Wiley: Wiley New York · Zbl 0373.76001
[3] Yang, J., Nonlinear waves in integrable and nonintegrable systems (2010), SIAM: SIAM Philadelphia · Zbl 1234.35006
[4] Ablowitz, M. J.; Segur, H., Solitons and the inverse scattering transform (1981), SIAM: SIAM Philadelphia · Zbl 0472.35002
[5] Hirota, R., The direct method in soliton theory (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1099.35111
[6] Wang, M.; Tian, B.; Sun, Y.; Zhang, Z., Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles, Comput Math Appl, 79, 576-587 (2020) · Zbl 1443.76233
[7] Manafian, J., Novel solitary wave solutions for the (3+1)-dimensional extended Jimbo-Miwa equations, Comput Math Appl, 76, 1246-1260 (2018) · Zbl 1427.35236
[8] Manafian, J.; Lakestani, M., Interaction among a lump, periodic waves, and kink solutions to the fractional generalized CBS-BK equation, Math Methods Appl Sci, 44, 1052-1070 (2021) · Zbl 1480.35091
[9] Du, X.-X.; Tian, B.; Qu, Q.-X.; Yuan, Y.-Q.; Zhao, X.-H., Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma, Chaos Solitons Fractals, 134, Article 109709 pp. (2020) · Zbl 1483.35177
[10] Zhang, C.-R.; Tian, B.; Qu, Q.-X.; Liu, L.; Tian, H. Y., Vector bright solitons and their interactions of the couple Fokas-Lenells system in a birefringent optical fiber, Z Angew Math Phys, 71, Article 18 pp. (2020) · Zbl 1508.35164
[11] Chen, S.-S.; Tian, B.; Chai, J.; Wu, X.-Y.; Du, Z., Lax pair, binary Darboux transformations and dark-soliton interaction of a fifth-order defocusing nonlinear Schrödinger equation for the attosecond pulses in the optical fiber communication, Waves Random Complex Media, 30, 389-402 (2020) · Zbl 1498.78032
[12] Rogers, C.; Schief, W. K., Bäcklund and darboux transformations: geometry and modern applications in soliton theory (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1019.53002
[13] Manafian, J., An Optimal Galerkin-Homotopy asymptotic method applied to the nonlinear second-order BVPs, Proc Inst Math Mech, 47, 156-182 (2021) · Zbl 1474.65263
[14] Manafian, J.; Heidari, S., Periodic and singular kink solutions of the Hamiltonian Amplitude equation, Adv Math Mod Appl, 4, 134-149 (2019)
[15] Gao, X.-Y.; Guo, Y.-J.; Shan, W.-R., Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations, Appl Math Lett, 104, Article 106170 pp. (2020) · Zbl 1437.86001
[16] Gao, X.-Y.; Guo, Y.-J.; Shan, W.-R., Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system, Chaos Solitons Fractals, 138, Article 109950 pp. (2020) · Zbl 1490.35314
[17] Gao, X.-Y.; Guo, Y.-J.; Shan, W.-R., Hetero-Bäcklund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics, Phys Lett A, 384, Article 126788 pp. (2020) · Zbl 1448.37084
[18] Gao X.-Y., Guo Y.-J., Shan W.-R. Cosmic dusty plasmas via a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili-Burgers-type equation: auto-Bäcklund transformations, solitons and similarity reductions plus observational/experimental supports. Waves Random Complex Media.doi:10.1080/17455030.2021.1942308.
[19] Han, P.-F.; Bao, T., Bäcklund transformation and some different types of N-soliton solutions to the (3 + 1)-dimensional generalized nonlinear evolution equation for the shallow-water waves, Math Methods Appl Sci, 44, 11307-11323 (2021) · Zbl 1473.35096
[20] Shen, Y.; Tian, B.; Liu, S.-H.; Yang, D.-Y., Bilinear Bäcklund transformation, soliton and breather solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics, Phys Scr, 96, Article 075212 pp. (2021)
[21] Sun, Y.; Tian, B., Solitonic interaction and Bäcklund transformation for a generalized inhomogeneous coupled nonlinear Schrödinger system, Opt Eng, 56, Article 126106 pp. (2017)
[22] Malomed, B. A., Soliton management in periodic systems (2006), Springer: Springer New York · Zbl 1214.35056
[23] Xu, G.; Chabchoub, A.; Pelinovsky, D. E.; Kibler, B., Observation of modulation instability and rogue breathers on stationary periodic waves, Phys Rev Res, 2, Article 033528 pp. (2020)
[24] e2019348118
[25] Chabchoub, A.; Slunyaev, A.; Hoffmann, N.; Dias, F.; Kibler, B.; Genty, G., The Peregrine Breather on the Zero-Background Limit as the Two-Soliton Degenerate Solution: An Experimental Study, Front Phys, 9, Article 633549 pp. (2021)
[26] Kedzioraa, D. J.; Ankiewicz, A.; Akhmediev, N., Rogue waves and solitons on a cnoidal background, Eur Phys J Spec Top, 223, 43-62 (2014)
[27] Chen, J.; Pelinovsky, D. E.; White, R. E., Periodic standing waves in the focusing nonlinear Schrödinger equation: Rogue waves and modulation instability, Phys D, 405, Article 132378 pp. (2020) · Zbl 1490.35399
[28] Chen, J.; Pelinovsky, D. E., Rogue periodic waves in the focusing nonlinear Schrödinger equation, Proc R Soc Lond A, 474, Article 20170814 pp. (2018) · Zbl 1402.35256
[29] Feng, B. F.; Ling, L. M.; Takahashi, D. A., Multi-breathers and high order rogue waves for the nonlinear Schrödinger equation on the elliptic function background, Stud Appl Math, 144, 46-101 (2020) · Zbl 1454.35338
[30] Chen, J.; Pelinovsky, D. E., Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation, Phys Rev E, 103, Article 062206 pp. (2021)
[31] Chen, J.; Pelinovsky, D. E.; Upsal, J., Modulational Instability of Periodic Standing Waves in the Derivative NLS Equation, J Nonlinear Sci, 31, Article 58 pp. (2021) · Zbl 1477.35235
[32] Xue, B.; Shen, J.; Geng, X., Breathers and breather-rogue waves on a periodic background for the derivative nonlinear Schrödinger equation, Phys Scr, 95, Article 055216 pp. (2020)
[33] Zhang, H. Q.; Chen, F., Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background, Chaos, 31, Article 023129 pp. (2021) · Zbl 1467.35273
[34] Sinthuja, N.; Manikandan, K.; Senthilvelan, M., Formation of rogue waves on the periodic background in a fifth-order nonlinear Schrödinger equation, Phys Lett A, 415, Article 127640 pp. (2021) · Zbl 07412670
[35] Chen, F.; Zhang, H. Q., Periodic travelling waves and rogue waves for the higher-order modified Korteweg-de Vries equation, Commun Nonlinear Sci Numer Simul, 97, Article 105767 pp. (2021) · Zbl 1456.35176
[36] Lou, Y.; Zhang, Y.; Ye, R., Rogue waves on the general periodic traveling wave background for an extended modified Korteweg-de Vries equation, Math Methods Appl Sci, 44, 13711-13722 (2021) · Zbl 1479.35723
[37] Sinthuja, N.; Manikandan, K.; Senthilvelan, M., Rogue waves on an elliptic function background in complex modified Korteweg-de Vries equation, Phys Scr, 96, Article 105206 pp. (2021) · Zbl 07412670
[38] Sinthuja, N.; Manikandan, K.; Senthilvelan, M., Rogue waves on the double-periodic background in Hirota equation, Euro Phys J Plus, 136, Article 305 pp. (2021) · Zbl 07412670
[39] Gao, X.; Zhang, H. Q., Rogue waves for the Hirota equation on the Jacobi elliptic cn-function background, Nonlinear Dyn, 101, 1159-1168 (2020) · Zbl 1516.35294
[40] Ding, C.-C.; Gao, Y.-T.; Li, L.-Q., Breathers and rogue waves on the periodic background for the Gerdjikov-Ivanov equation for the Alfvén waves in an astrophysical plasma, Chaos Solitons Fractals, 120, 259-265 (2019) · Zbl 1448.35084
[41] Li, R.; Geng, X., Rogue periodic waves of the sine-Gordon equation, Appl Math Lett, 102, Article 106147 pp. (2020) · Zbl 1440.35030
[42] Pelinovsky, D. E.; White, R. E., Localized structures on vibrational and rotational travelling waves in the sine-Gordon equation, Proc R Soc Lond A, 476, Article 20200490 pp. (2020) · Zbl 1472.35010
[43] Rao, J.; He, J.; Mihalache, D., Doubly localized rogue waves on a background of dark solitons for the Fokas system, Appl Math Lett, 121, Article 107435 pp. (2021) · Zbl 1475.35109
[44] Ye, Y.; Bu, L.; Wang, W.; Chen, S.; Baronio, F.; Mihalache, D., Peregrine solitons on a periodic background in the vector cubic-quintic nonlinear Schrödinger equation, Front Phys, 8, Article 596950 pp. (2020)
[45] Pan, C.; Bu, L.; Chen, S.; Mihalache, D.; Grelu, P.; Baronio, F., Omnipresent coexistence of rogue waves in a nonlinear two-wave interference system and its explanation by modulation instability, Phys Rev Res, 3, Article 033152 pp. (2021)
[46] Wazwaz, A. M.; El-Tantaw, S. A., Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method, Nonlinear Dyn, 88, 3017-3021 (2017)
[47] Yu, J. P.; Sun, Y. L., A direct Bäcklund transformation for a (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation, Nonlinear Dyn, 90, 2263-2268 (2017) · Zbl 1393.37087
[48] Sun, B.; Wazwaz, A. M., General high-order breathers and rogue waves in the (3+1)-dimensional KP-Boussinesq equation, Commun Nonlinear Sci Numer Simul, 64, 1-13 (2018) · Zbl 1524.35510
[49] Liu, W.; Zhang, Y., Multiple rogue wave solutions of the (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq equation, Z Angew Math Phys, 70, Article 112 pp. (2019) · Zbl 1431.35134
[50] Liu, N.; Liu, Y., Lump solitons and interaction phenomenon to a (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation, Mod Phys Lett B, 33, Article 1950395 pp. (2019)
[51] Verma, P.; Kaur, L., Analytic Study of (3+1)-Dimensional Kadomstev-Petviashvili-Boussinesq Equation: Painlevé Analysis and Exact Solutions, AIP Conf Proc, 1975, Article 030022 pp. (2018)
[52] Kaur, L.; Wazwaz, A. M., Dynamical analysis of lump solutions for (3+1) dimensional generalized KP-Boussinesq equation and Its dimensionally reduced equations, Phys Scr, 93, Article 075203 pp. (2018)
[53] Moleleki, L. D.; Simbanefayi, I.; Khalique, C. M., Symmetry solutions and conservation laws of a (3+1)-dimensional generalized KP-Boussinesq equation in fluid mechanics, Chin J Phys, 68, 940-949 (2020) · Zbl 07848654
[54] Manafian, J., Multiple rogue wave solutions and the linear superposition principle for a (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation arising in energy distributions, Math Methods Appl Sci, 44, 14079-14093 (2021) · Zbl 1492.35226
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.