×

Kannan contraction maps on the space of null variable exponent second-order quantum backward difference sequences of fuzzy functions and its pre-quasi ideal. (English) Zbl 1497.46007

Summary: In this paper, we construct and investigate the space of null variable exponent second-order quantum backward difference sequences of fuzzy functions, which are crucial additions to the concept of modular spaces. The idealization of the mappings has been achieved through the use of extended \(s\)-fuzzy functions and this sequence space of fuzzy functions. This new space’s topological and geometric properties and the mappings’ ideal that corresponds to them are discussed. We construct the existence of a fixed point of Kannan contraction mapping acting on this space and its associated pre-quasi ideal. To demonstrate our findings, we give a number of numerical experiments. There are also some significant applications of the existence of solutions to nonlinear difference equations of fuzzy functions.

MSC:

46A45 Sequence spaces (including Köthe sequence spaces)
39A70 Difference operators
47H10 Fixed-point theorems
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
47S40 Fuzzy operator theory

References:

[1] Yaying, T.; Hazarika, B.; Chandra Tripathy, B.; Mursaleen, M., The spectrum of second order quantum difference operator, Symmetry, 14, 3, 557 (2022) · doi:10.3390/sym14030557
[2] Et, M., On some difference sequence spaces, Doğa-Tr. J. Math, 17, 18-24 (1993) · Zbl 0826.40001
[3] Pietsch, A., Operator Ideals (1980), Amsterdam, Netherlands: North-Holland Publishing Company, Amsterdam, Netherlands · Zbl 0434.47030
[4] Constantin, Gh., Operators of \(ces-p\) type, Rend. Acc. Naz. Lincei, 52, 8, 875-878 (1972) · Zbl 0284.47028
[5] Tita, N., On Stolz mappings, Math. Japonica, 26, 4, 495-496 (1981) · Zbl 0472.47011
[6] Faried, N.; Bakery, A. A., Small operator ideals formed by \(s\) numbers on generalized Cesàro and Orlicz sequence spaces, Journal of Inequalities and Applications, 1 (2018) · Zbl 1485.47024 · doi:10.1186/s13660-018-1945-y
[7] Bakery, A. A.; Elmatty, A. R. A., A note on Nakano generalized difference sequence space, Advances in Difference Equations, 2020, 1, 620 (2020) · Zbl 1487.46003 · doi:10.1186/s13662-020-03082-1
[8] Banach, S., Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3, 133-181 (1922) · JFM 48.0201.01 · doi:10.4064/fm-3-1-133-181
[9] Ruẑiĉka, M., Electrorheological fluids. Modeling and mathematical theory Lecture Notes in Mathematics, 1748 (2000), Berlin, Germany: Springer, Berlin, Germany · Zbl 0968.76531
[10] Mao, W.; Zhu, Q.; Mao, X., Existence, uniqueness and almost surely asymptotic estimations of the solutions to neutral stochastic functional differential equations driven by pure jumps, Applied Mathematics and Computation, 254, 252-265 (2015) · Zbl 1410.34245 · doi:10.1016/j.amc.2014.12.126
[11] Younis, M.; Singh, D.; Abdou, A. A. N., A fixed point approach for tuning circuit problem in dislocated \(b\)-metric spaces, Mathematical Methods in the Applied Sciences, 45, 4, 1801-2459 (2022)
[12] Younis, M.; Singh, D., On the existence of the solution of Hammerstein integral equations and fractional differential equations, J. Appl. Math. Comput, 68, 2, 1087-1105 (2022) · Zbl 1490.45007 · doi:10.1007/s12190-021-01558-1
[13] Younis, M.; Singh, D.; Altun, I.; Chauhan, V., Graphical structure of extended \(b\)-metric spaces: an application to the transverse oscillations of a homogeneous bar, International Journal of Nonlinear Sciences and Numerical Stimulation (2021) · Zbl 07678010 · doi:10.1515/ijnsns-2020-0126
[14] Younis, M.; Stretenović, A.; Radenović, S., Some critical remarks on ’Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations, Nonlinear Analysis Modelling and Control, 27, 1, 163-178 (2022) · Zbl 1482.54092 · doi:10.15388/namc.2022.27.25193
[15] Kannan, R., Some results on fixed points- II, The American Mathematical Monthly, 76, 4, 405 (1969) · Zbl 0179.28203 · doi:10.2307/2316437
[16] Ghoncheh, S. J. H., Some Fixed point theorems for Kannan mapping in the modular spaces, 37, 462-466 (2015), Santa Maria, CA, USA: Ciĕncia eNatura, Santa Maria, CA, USA
[17] Bakery, A. A.; Mohamed, O. S. K., Kannan prequasi contraction maps on Nakano sequence spaces, J. Funct. Spaces, 2020 (2020) · Zbl 1491.47040
[18] Zadeh, L. A., Fuzzy sets, Information and Control, 8, 3, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/s0019-9958(65)90241-x
[19] Javed, K.; Uddin, F.; Aydi, H.; Mukheimer, A.; Arshad, M., Ordered-theoretic fixed point results in fuzzy \(b\)-metric spaces with an application, Journal of Mathematics, 2021 (2021) · Zbl 1477.54090 · doi:10.1155/2021/6663707
[20] Rehman, S. U.; Aydi, H., Rational fuzzy cone contractions on fuzzy cone metric spaces with an application to fredholm integral equations, Journal of Function Spaces, 2021 (2021) · Zbl 1516.54051 · doi:10.1155/2021/5527864
[21] Humaira, H. A. H., M. S.; Hammad, H. A.; Sarwar, M.; De L, M., Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces, Advances in Difference Equations, 2021, 1 (2021) · Zbl 1494.34174 · doi:10.1186/s13662-021-03401-0
[22] Rome, B.; Sarwar, M.; Rodríguez-López, R., Fixed point results via \(\alpha \)-admissibility in extended fuzzy rectangular \(b\)-metric spaces with applications to integral equations, Mathematics, 9, 16 (2021) · doi:10.3390/math9162009
[23] Rehman, S. U.; Bano, A.; Aydi, H.; Park, C., An approach of Banach algebra in fuzzy metric spaces with an application, AIMS Mathematics, 7, 5, 9493-9507 (2022) · doi:10.3934/math.2022527
[24] Aydi, H.; Aslam, M.; Sagheer, D.; Batul, S.; Ali, R.; Ameer, E., Kannan-type contractions on new extended \(b\)-metric spaces, Journal of Function Spaces, 2021 (2021) · Zbl 1489.54069 · doi:10.1155/2021/7613684
[25] Samreen, M.; Hussain, S.; Aydi, H.; Gaba, Y. U., -Contractive mappings in fuzzy metric spaces, Journal of Mathematics, 2022 (2021) · doi:10.1155/2022/5920124
[26] Nuray, F.; Savaş, E., Statistical convergence of sequences of fuzzy numbers, Mathematica Slovaca, 45, 3, 269-273 (1995) · Zbl 0852.40003
[27] Bakery, A. A.; Mohamed, E. A. E., On the nonlinearity of extended \(s\)-type weighted Nakano sequence spaces of fuzzy functions with some applications, Journal of Function Spaces, 2022 (2022) · Zbl 1495.46061 · doi:10.1155/2022/2746942
[28] Matloka, M., Sequences of fuzzy numbers, Fuzzy Sets and Systems, 28, 28-37 (1986) · Zbl 0626.26010
[29] Nanda, S., On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33, 1, 123-126 (1989) · Zbl 0707.54003 · doi:10.1016/0165-0114(89)90222-4
[30] Kumar, V.; Sharma, A.; Kumar, K.; Singh, N., On I-limit points and I-cluster points of sequences of fuzzy numbers, International Mathematical Forum, 2, 57, 2815-2822 (2007) · Zbl 1132.40301 · doi:10.12988/imf.2007.07254
[31] Pietsch, A., Eigenvalues and \(s\)-numbers (1986), New York. NY, USA: Cambridge University Press, New York. NY, USA
[32] Bakery, A. A.; Mohamed, O. K. S. K., Orlicz generalized difference sequence space and the linked pre-quasi operator ideal, Journal of Mathematics, 2020 (2020) · Zbl 1484.46009 · doi:10.1155/2020/6664996
[33] Altay, B.; Başar, F., Generalization of the sequence space \(\ell\left( p\right)\) derived by weighted means, Journal of Mathematical Analysis and Applications, 330, 1, 147-185 (2007) · Zbl 1116.46003
[34] Rhoades, B. E., Operators of \(A-p\) type, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur, 59, 8, 238-241 (1975) · Zbl 0357.47020
[35] Salimi, P.; Latif, A.; Hussain, N., Modified \(\alpha-\psi \)-contractive mappings with applications, Fixed Point Theory and Applications, 151, 2013 (2013) · Zbl 1293.54036
[36] Nakano, H., Modulared sequence spaces, Proceedings of the Japan Academy Series A: Mathematical Sciences · Zbl 0044.11302 · doi:10.3792/pja/1195571225
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.