×

Propagation of chaos: a review of models, methods and applications. II: Applications. (English) Zbl 1496.82017

Summary: The notion of propagation of chaos for large systems of interacting particles originates in statistical physics and has recently become a central notion in many areas of applied mathematics. The present review describes old and new methods as well as several important results in the field. The models considered include the McKean-Vlasov diffusion, the mean-field jump models and the Boltzmann models. The first part of this review is an introduction to modelling aspects of stochastic particle systems and to the notion of propagation of chaos. The second part presents concrete applications and a more detailed study of some of the important models in the field.
For Part I, see [ibid. [ibid. 15, No. 6, 895–1015 (2022; Zbl 1496.82016)].

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics
35Q70 PDEs in connection with mechanics of particles and systems of particles
65C35 Stochastic particle methods
92-10 Mathematical modeling or simulation for problems pertaining to biology

Citations:

Zbl 1496.82016

References:

[1] J. A. Acebrón; L. L. Bonilla; C. J. Pérez Vicente; F. Ritort; R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern Phys., 77, 137-185 (2005) · doi:10.1103/RevModPhys.77.137
[2] S. M. Ahn; S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51, 103301 (2010) · Zbl 1314.92019 · doi:10.1063/1.3496895
[3] G. Albi; N. Bellomo; L. Fermo; S.-Y. Ha; J. Kim; L. Pareschi; D. Poyato; J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29, 1901-2005 (2019) · Zbl 1431.35211 · doi:10.1142/S0218202519500374
[4] D. Aldous, Stopping times and tightness, Ann. Probab., 6, 335-340 (1978) · Zbl 0391.60007 · doi:10.1214/aop/1176995579
[5] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2008. · Zbl 1145.35001
[6] L. Andreis; P. Dai Pra; M. Fischer, McKean-Vlasov limit for interacting systems with simultaneous jumps, Stoch. Anal. Appl., 36, 960-995 (2018) · Zbl 1420.60042 · doi:10.1080/07362994.2018.1486202
[7] N. Ayi, From Newton’s law to the linear Boltzmann equation without cut-off, Comm. Math. Phys., 350, 1219-1274 (2017) · Zbl 1360.82076 · doi:10.1007/s00220-016-2821-6
[8] H. Babovsky, On a simulation scheme for the Boltzmann equation, Math. Methods Appl. Sci., 8, 223-233 (1986) · Zbl 0609.76084 · doi:10.1002/mma.1670080114
[9] H. Babovsky; R. Illner, A convergence proof for Nanbu’s simulation method for the full Boltzmann equation, SIAM J. Numer. Anal., 26, 45-65 (1989) · Zbl 0668.76086 · doi:10.1137/0726004
[10] M. Ballerini; N. Cabibbo; R. Candelier; A. Cavagna; E. Cisbani; I. Giardina; V. Lecomte; A. Orlandi; G. Parisi; A. Procaccini; M. Viale; V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA, 105, 1232-1237 (2008) · doi:10.1073/pnas.0711437105
[11] N. Bellomo, P. Degond and E. Tadmor (eds.), Active Particles, Volume 1: Advances in Theory, Models, and Applications, Modeling and Simulation in Science, Engineering and Technology, Springer International Publishing, 2017. · Zbl 1368.00045
[12] N. Bellomo, P. Degond and E. Tadmor (eds.), Active Particles, Volume 2: Advances in Theory, Models, and Applications, Modeling and Simulation in Science, Engineering and Technology, Springer International Publishing, 2019. · Zbl 1427.74004
[13] S. Benachour; B. Roynette; P. Vallois, Nonlinear self-stabilizing processes - Ⅱ: Convergence to invariant probability, Stochastic Process. Appl., 75, 203-224 (1998) · Zbl 0932.60064 · doi:10.1016/S0304-4149(98)00019-2
[14] D. Benedetto; E. Caglioti; J. A. Carrillo; M. Pulvirenti, A non-Maxwellian steady distribution for one-dimensional granular media, J. Stat. Phys., 91, 979-990 (1998) · Zbl 0921.60057 · doi:10.1023/A:1023032000560
[15] D. Benedetto; E. Caglioti; M. Pulvirenti, A kinetic equation for granular media, ESAIM: Mathematical Modelling and Numerical Analysis, 31, 615-641 (1997) · Zbl 0888.73006 · doi:10.1051/m2an/1997310506151
[16] R. J. Berman; M. Önnheim, Propagation of chaos for a class of first order models with singular mean field interactions, SIAM J. Math. Anal., 51, 159-196 (2019) · Zbl 1418.60054 · doi:10.1137/18M1196662
[17] E. Bertin; M. Droz; G. Grégoire, Boltzmann and hydrodynamic description for self-propelled particles, Phys. Rev. E, 74, 022101 (2006) · doi:10.1103/PhysRevE.74.022101
[18] E. Bertin; M. Droz; G. Grégoire, Hydrodynamic equations for self-propelled particles: Microscopic derivation and stability analysis, J. Phys. A: Math. Theor., 42, 445001 (2009) · Zbl 1422.76214 · doi:10.1088/1751-8113/42/44/445001
[19] L. Bertini; G. Giacomin; K. Pakdaman, Dynamical aspects of mean field plane rotators and the Kuramoto model, J. Stat. Phys., 138, 270-290 (2009) · Zbl 1187.82067 · doi:10.1007/s10955-009-9908-9
[20] L. Bertini; G. Giacomin; C. Poquet, Synchronization and random long time dynamics for mean-field plane rotators, Probab. Theory Related Fields, 160, 593-653 (2014) · Zbl 1309.60093 · doi:10.1007/s00440-013-0536-6
[21] P. L. Bhatnagar; E. P. Gross; M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511-525 (1954) · Zbl 0055.23609 · doi:10.1103/PhysRev.94.511
[22] G. A. Bird, Direct simulation and the Boltzmann equation, Phys. Fluids, 13, 2676 (1970) · Zbl 0227.76111 · doi:10.1063/1.1692849
[23] A. Blanchet; P. Degond, Topological interactions in a Boltzmann-type framework, J. Stat. Phys., 163, 41-60 (2016) · Zbl 1352.92182 · doi:10.1007/s10955-016-1471-6
[24] A. Blanchet; P. Degond, Kinetic models for topological nearest-neighbor interactions, J. Stat. Phys., 169, 929-950 (2017) · Zbl 1380.82032 · doi:10.1007/s10955-017-1882-z
[25] T. Bodineau; I. Gallagher; L. Saint-Raymond, The Brownian motion as the limit of a deterministic system of hard-spheres, Invent. math., 203, 493-553 (2016) · Zbl 1337.35107 · doi:10.1007/s00222-015-0593-9
[26] T. Bodineau; I. Gallagher; L. Saint-Raymond, From hard sphere dynamics to the Stokes-Fourier equations: An analysis of the Boltzmann-Grad limit, Ann. PDE, 3, 2 (2017) · Zbl 1403.35194 · doi:10.1007/s40818-016-0018-0
[27] T. Bodineau; I. Gallagher; L. Saint-Raymond; S. Simonella, One-sided convergence in the Boltzmann-Grad limit, Ann. Fac. Sci. Toulouse Math.(6), 27, 985-1022 (2018) · Zbl 1416.35174 · doi:10.5802/afst.1589
[28] T. Bodineau, I. Gallagher, L. Saint-Raymond and S. Simonella, Statistical dynamics of a hard sphere gas: Fluctuating Boltzmann equation and large deviations, preprint, arXiv: 2008.10403 · Zbl 1446.35089
[29] N. Boers; P. Pickl, On mean field limits for dynamical systems, Journal of Statistical Physics, 164, 1-16 (2016) · Zbl 1348.82054 · doi:10.1007/s10955-015-1351-5
[30] F. Bolley, Quantitative concentration inequalities on sample path space for mean field interaction, ESAIM Probab. Stat., 14, 192-209 (2010) · Zbl 1208.82038 · doi:10.1051/ps:2008033
[31] F. Bolley, J. A. Ca˜nizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179-2210, Publisher: World Scientific. · Zbl 1273.82041
[32] F. Bolley, J. A. Ca˜nizo and J. A. Carrillo, Mean-field limit for the stochastic Vicsek model, Appl. Math. Lett., 25 (2012), 339-343, Publisher: Elsevier. · Zbl 1239.91127
[33] F. Bolley; I. Gentil; A. Guillin, Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations, J. Funct. Anal., 263, 2430-2457 (2012) · Zbl 1253.35183 · doi:10.1016/j.jfa.2012.07.007
[34] F. Bolley; I. Gentil; A. Guillin, Uniform convergence to equilibrium for granular media, Arch. Ration. Mech. Anal., 208, 429-445 (2013) · Zbl 1264.35040 · doi:10.1007/s00205-012-0599-z
[35] F. Bolley; A. Guillin; F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, ESAIM Math. Model. Numer. Anal., 44, 867-884 (2010) · Zbl 1201.82029 · doi:10.1051/m2an/2010045
[36] F. Bolley; A. Guillin; C. Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces, Probab. Theory Related Fields, 137, 541-593 (2006) · Zbl 1113.60093 · doi:10.1007/s00440-006-0004-7
[37] M. Bossy, Some stochastic particle methods for nonlinear parabolic PDEs, ESAIM Proc., 15, 18-57 (2005) · Zbl 1090.65008
[38] M. Bossy; O. Faugeras; D. Talay, Clarification and complement to “Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons”, J. Math. Neurosci., 5, 5-19 (2015) · Zbl 1361.92014 · doi:10.1186/s13408-015-0031-8
[39] M. Bossy; D. Talay, Convergence rate for the approximation of the limit law of weakly interacting particles: Application to the Burgers equation, Ann. Appl. Probab., 6, 818-861 (1996) · Zbl 0860.60038 · doi:10.1214/aoap/1034968229
[40] M. Bossy; D. Talay, A stochastic particle method for the Mckean-Vlasov and the Burgers equation, Math. Comp., 66, 157-192 (1997) · Zbl 0854.60050 · doi:10.1090/S0025-5718-97-00776-X
[41] W. Braun; K. Hepp, The Vlasov dynamics and its fluctuation in the 1/N limit of interacting particles, Comm. Math. Phys., 56, 101-113 (1977) · Zbl 1155.81383 · doi:10.1007/BF01611497
[42] D. Bresch; P.-E. Jabin; Z. Wang, On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak-Keller-Segel model, C. R. Math. Acad. Sci. Paris, 357, 708-720 (2019) · Zbl 1428.35617 · doi:10.1016/j.crma.2019.09.007
[43] M. Briant, A. Diez and S. Merino-Aceituno, Cauchy theory and mean-field limit for general Vicsek models in collective dynamics, preprint, arXiv: 2004.00883. · Zbl 1537.35302
[44] P. Calderoni and M. Pulvirenti, Propagation of chaos for Burgers’ equation, Ann. Inst. Henri Poincaré, Physique théorique, 39 (1983), 85-97. · Zbl 0526.60057
[45] J. A. Cañizo; H. Yolda, Asymptotic behaviour of neuron population models structured by elapsed-time, Nonlinearity, 32, 464-495 (2018) · Zbl 1406.35172 · doi:10.1088/1361-6544/aaea9c
[46] P. Cardaliaguet, Notes on mean field games (from P.-L. Lions’ lectures at Collège de France), in Lecture given at Tor Vergata, 2010, 1-59.
[47] P. Cardaliaguet, F. Delarue, J.-M. Lasry and P.-L. Lions, The Master Equation and the Convergence Problem in Mean Field Games, Annals of Mathematics Studies, 201, Princeton University Press, 2019. · Zbl 1430.91002
[48] E. Carlen; M. C. Carvalho; P. Degond; B. Wennberg, A Boltzmann model for rod alignment and schooling fish, Nonlinearity, 28, 1783-1803 (2015) · Zbl 1320.35251 · doi:10.1088/0951-7715/28/6/1783
[49] E. Carlen; R. Chatelin; P. Degond; B. Wennberg, Kinetic hierarchy and propagation of chaos in biological swarm models, Phys. D, 260, 90-111 (2013) · doi:10.1016/j.physd.2012.05.013
[50] E. Carlen; P. Degond; B. Wennberg, Kinetic limits for pair-interaction driven master equations and biological swarm models, Math. Models Methods Appl. Sci., 23, 1339-1376 (2013) · Zbl 1294.35173 · doi:10.1142/S0218202513500115
[51] R. Carmona, Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications, SIAM, 2016. · Zbl 1342.60001
[52] R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications I, Mean Field FBSDEs, Control, and Games, Probability Theory and Stochastic Modelling, 83, Springer International Publishing, 2018. · Zbl 1422.91014
[53] R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications Ⅱ, Mean Field Games with Common Noise and Master Equations, Probability Theory and Stochastic Modelling, 84, Springer International Publishing, 2018. · Zbl 1422.91015
[54] K. Carrapatoso, Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules, Kinet. Relat. Models, 9, 1-49 (2015) · Zbl 1332.82075 · doi:10.3934/krm.2016.9.1
[55] J. A. Carrillo; Y.-P. Choi; C. Totzeck; O. Tse, An analytical framework for consensus-based global optimization method, Math. Models Methods Appl. Sci., 28, 1037-1066 (2018) · Zbl 1397.35311 · doi:10.1142/S0218202518500276
[56] J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (eds. G. Naldi, L. Pareschi and G. Toscani), Birkhäuser Boston, 2010,297-336. · Zbl 1211.91213
[57] J. A. Carrillo; S. Jin; L. Li; Y. Zhu, A consensus-based global optimization method for high dimensional machine learning problems, ESAIM Control Optim. Calc. Var., 27, 1-22 (2021) · Zbl 1480.60195 · doi:10.1051/cocv/2020046
[58] J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, in Collective Dynamics from Bacteria to Crowds (eds. A. Muntean and F. Toschi), CISM International Centre for Mechanical Sciences, 553, Springer, Vienna, 2014, 1-46.
[59] J. A. Carrillo; Y.-P. Choi; S. Salem, Propagation of chaos for the Vlasov-Poisson-Fokker-Planck equation with a polynomial cut-off, Commun. Contemp. Math., 21, 1850039 (2019) · Zbl 1417.35201 · doi:10.1142/S0219199718500396
[60] J. A. Carrillo; M. Delgadino; G. Pavliotis, A \(\lambda \)-convexity based proof for the propagation of chaos for weakly interacting stochastic particles, J. Funct. Anal., 279, 108734 (2020) · Zbl 1459.60005 · doi:10.1016/j.jfa.2020.108734
[61] J. A. Carrillo; M. R. D’Orsogna; V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinet. Relat. Models, 2, 363-378 (2009) · Zbl 1195.92069 · doi:10.3934/krm.2009.2.363
[62] J. A. Carrillo; R. J. McCann; C. Villani, Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19, 971-1018 (2003) · Zbl 1073.35127 · doi:10.4171/RMI/376
[63] J. A. Carrillo; R. J. McCann; C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 17, 217-263 (2006) · Zbl 1082.76105 · doi:10.1007/s00205-005-0386-1
[64] P. Cattiaux; A. Guillin; F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case, Probab. Theory Related Fields, 140, 19-40 (2008) · Zbl 1169.35031 · doi:10.1007/s00440-007-0056-3
[65] P. Cattiaux; F. Delebecque; L. Pédèches, Stochastic Cucker-Smale models: Old and new, Ann. Appl. Probab., 28, 3239-3286 (2018) · Zbl 1402.60071 · doi:10.1214/18-AAP1400
[66] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, Springer-Verlag New York, 1994. · Zbl 0813.76001
[67] J.-F. Chassagneux, L. Szpruch and A. Tse, Weak quantitative propagation of chaos via differential calculus on the space of measures, preprint, arXiv: 1901.02556. · Zbl 1497.60074
[68] H. Chaté; F. Ginelli; G. Grégoire; F. Raynaud, Collective motion of self-propelled particles interacting without cohesion, Phys. Rev. E, 77, 046113 (2008) · doi:10.1103/PhysRevE.77.046113
[69] P.-E. Chaudru de Raynal, Strong well posedness of McKean-Vlasov stochastic differential equations with Hölder drift, Stochastic Process. Appl., 130, 79-107 (2020) · Zbl 1471.60081 · doi:10.1016/j.spa.2019.01.006
[70] P.-E. Chaudru de Raynal and N. Frikha, From the backward Kolmogorov PDE on the Wasserstein space to propagation of chaos for McKean-Vlasov SDE’s, preprint, arXiv: 1907.01410. · Zbl 1481.60105
[71] P.-E. Chaudru de Raynal and N. Frikha, Well-posedness for some non-linear diffusion processes and related PDE on the Wasserstein space, preprint, arXiv: 1811.06904 · Zbl 1494.60063
[72] J.-Y. Chemin, Fluides Parfaits Incompressibles, Astérisque, 230, Société mathématique de France, 1995. · Zbl 0829.76003
[73] L. Chen; E. S. Daus; A. Holzinger; A. Jüngel, Rigorous derivation of population cross-diffusion systems from moderately interacting particle systems, J. Nonlinear Sci., 31, 1-38 (2021) · Zbl 1477.35281 · doi:10.1007/s00332-021-09747-9
[74] J. Chevallier, Mean-field limit of generalized Hawkes processes, Stochastic Process. Appl., 127, 3870-3912 (2017) · Zbl 1374.60090 · doi:10.1016/j.spa.2017.02.012
[75] T.-S. Chiang, McKean-Vlasov equations with discontinuous coefficients, Soochow Journal of Mathematics, 20, 507-526 (1994) · Zbl 0817.60071
[76] L. Chizat and F. Bach, On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport, in Advances in Neural Information Processing Systems 31 (NeurIPS 2018) (eds. S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., Montreal, Canada, 2018, 3040-3050.
[77] Y.-P. Choi; S. Salem, Propagation of chaos for aggregation equations with no-flux boundary conditions and sharp sensing zones, Math. Models Methods Appl. Sci., 28, 223-258 (2018) · Zbl 1383.82034 · doi:10.1142/S0218202518500070
[78] Y.-P. Choi; S. Salem, Collective behavior models with vision geometrical constraints: Truncated noises and propagation of chaos, J. Differential Equations, 266, 6109-6148 (2019) · Zbl 1414.35226 · doi:10.1016/j.jde.2018.10.042
[79] Y.-P. Choi; S. Salem, Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition, Kinet. Relat. Models, 12, 573-592 (2019) · Zbl 1420.60066 · doi:10.3934/krm.2019023
[80] A. J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech., 57, 785-796 (1973) · doi:10.1017/S0022112073002016
[81] G. Clarté, A. Diez and J. Feydy, Collective proposal distributions for nonlinear MCMC samplers: Mean-field theory and fast implementation, preprint, arXiv: 1909.08988
[82] M. Coghi; F. Flandoli, Propagation of chaos for interacting particles subject to environmental noise, Ann. Appl. Probab., 26, 1407-1442 (2016) · Zbl 1345.60113 · doi:10.1214/15-AAP1120
[83] R. Cortez; J. Fontbona, Quantitative propagation of chaos for generalized Kac particle systems, Ann. Appl. Probab., 26, 892-916 (2016) · Zbl 1339.60138 · doi:10.1214/15-AAP1107
[84] R. Cortez; J. Fontbona, Quantitative uniform propagation of chaos for Maxwell molecules, Commun. Math. Phys., 357, 913-941 (2018) · Zbl 1392.82048 · doi:10.1007/s00220-018-3101-4
[85] D. Crisan; A. Doucet, A survey of convergence results on particle filtering methods for practitioners, IEEE Trans. Signal Process., 50, 736-746 (2002) · Zbl 1369.60015 · doi:10.1109/78.984773
[86] I. Csisz{á}r, Sanov property, generalized {I}-projection and a conditional limit theorem, Ann. Probab., 12 (1984), 768-793, https://projecteuclid.org/euclid.aop/1176993227. · Zbl 0544.60011
[87] F. Cucker; S. Smale, On the mathematics of emergence, Jpn. J. Math., 2, 197-227 (2007) · Zbl 1166.92323 · doi:10.1007/s11537-007-0647-x
[88] P. Dai Pra; F. den Hollander, McKean-Vlasov limit for interacting random processes in random media, J. Stat. Phys., 84, 735-772 (1996) · Zbl 1081.60554 · doi:10.1007/BF02179656
[89] S. Danieri and G. Savaré, Lecture notes on gradient flows and optimal transport, in Optimal Transportation (eds. H. Pajot, Y. Ollivier and C. Villani), Cambridge University Press, Cambridge, 2014,100-144, https://www.cambridge.org/core/product/identifier/CBO9781107297296A015/type/book_part. · Zbl 1333.49001
[90] D. Dawson, Measure-valued Markov processes, in École d’Été de Probabilités de Saint-Flour XXI-1991 (ed. P. Hennequin), Lecture Notes in Mathematics, 1541, Springer Berlin Heidelberg, 1993. · Zbl 0799.60080
[91] D. Dawson; J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, 20, 247-308 (1987) · Zbl 0613.60021 · doi:10.1080/17442508708833446
[92] D. Dawson; J. Vaillancourt, Stochastic McKean-Vlasov equations, NoDEA Nonlinear Differential Equations Appl., 2, 199-229 (1995) · Zbl 0830.60091 · doi:10.1007/BF01295311
[93] D. A. Dawson, Critical dynamics and fluctuations for a mean-field model of cooperative behavior, J. Stat. Phys., 31, 29-85 (1983) · doi:10.1007/BF01010922
[94] D. A. Dawson and K. J. Hochberg, Wandering random measures in the Fleming-Viot model, Ann. Probab., 10 (1982), 554-580, https://projecteuclid.org/journals/annals-of-probability/volume-10/issue-3/Wandering-Random-Measures-in-the-Fleming-Viot-Model/10.1214/aop/1176993767.full. · Zbl 0492.60045
[95] V. De Bortoli, A. Durmus and X. Fontaine, Quantitative propagation of chaos for SGD in wide neural networks, in Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020,278-288, https://proceedings.neurips.cc/paper/2020/file/02e74f10e0327ad868d138f2b4fdd6f0-Paper.pdf.
[96] A. De Masi; A. Galves; E. Löcherbach; E. Presutti, Hydrodynamic limit for interacting neurons, J. Stat. Phys., 158, 866-902 (2015) · Zbl 1315.35222 · doi:10.1007/s10955-014-1145-1
[97] P. Degond; M. Pulvirenti, Propagation of chaos for topological interactions, Ann. Appl. Probab., 29, 2594-2612 (2019) · Zbl 1456.60254 · doi:10.1214/19-AAP1469
[98] P. Degond, Macroscopic limits of the Boltzmann equation: A review, in Modeling and Computational Methods for Kinetic Equations (eds. N. Bellomo, P. Degond, L. Pareschi and G. Russo), Birkhäuser Boston, Boston, MA, 2004, 3-57, Series Title: Modeling and Simulation in Science, Engineering and Technology. · Zbl 1106.82030
[99] P. Degond, Mathematical models of collective dynamics and self-organization, in Proceedings of the International Congress of Mathematicians ICM 2018, 4, Rio de Janeiro, Brazil, 2018, 3943-3964.
[100] P. Degond; A. Frouvelle; J.-G. Liu, Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics, Arch. Ration. Mech. Anal., 216, 63-115 (2015) · Zbl 1311.82017 · doi:10.1007/s00205-014-0800-7
[101] P. Degond, A. Frouvelle, S. Merino-Aceituno and A. Trescases, Alignment of self-propelled rigid bodies: From particle systems to macroscopic equations, in Stochastic Dynamics Out of Equilibrium, Institut Henri Poincaré, Paris, France, 2017 (eds. G. Giacomin, S. Olla, E. Saada, H. Spohn and G. Stoltz), Springer Proceedings in Mathematics & Statistics, 282, Springer, Cham, 2019, 28-66. · Zbl 1442.82030
[102] P. Degond; J.-G. Liu; S. Merino-Aceituno; T. Tardiveau, Continuum dynamics of the intention field under weakly cohesive social interaction, Math. Models Methods Appl. Sci., 27, 159-182 (2017) · Zbl 1362.82033 · doi:10.1142/S021820251740005X
[103] P. Degond; S. Merino-Aceituno, Nematic alignment of self-propelled particles: From particle to macroscopic dynamics, Math. Models Methods Appl. Sci., 30, 1935-1986 (2020) · Zbl 1451.35218 · doi:10.1142/S021820252040014X
[104] P. Degond; S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18, 1193-1215 (2008) · Zbl 1157.35492 · doi:10.1142/S0218202508003005
[105] P. Del Moral; J. Tugaut, On the stability and the uniform propagation of chaos properties of Ensemble Kalman-Bucy filters, Ann. Appl. Probab., 28, 790-850 (2018) · Zbl 1391.60082 · doi:10.1214/17-AAP1317
[106] P. Del Moral, Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems, Ann. Appl. Probab., 8, 438-495 (1998) · Zbl 0937.60038 · doi:10.1214/aoap/1028903535
[107] P. Del Moral, Feynman-Kac Formulae, Genealogical and Interacting Particle Systems with Applications, Probability and Its Applications, Springer-Verlag New York, 2004. · Zbl 1130.60003
[108] P. Del Moral, Mean Field Simulation for Monte Carlo Integration, Monographs on Statistics and Applied Probability, 126, CRC Press, Taylor & Francis Group, 2013. · Zbl 1282.65011
[109] P. Del Moral; A. Kurtzmann; J. Tugaut, On the stability and the uniform propagation of chaos of a class of extended ensemble Kalman-Bucy filters, SIAM J. Control Optim., 55, 119-155 (2017) · Zbl 1356.60065 · doi:10.1137/16M1087497
[110] P. Del Moral; J. Tugaut, Uniform propagation of chaos and creation of chaos for a class of nonlinear diffusions, Stoch. Anal. Appl., 37, 909-935 (2019) · Zbl 1423.60122 · doi:10.1080/07362994.2019.1622426
[111] S. Delattre; N. Fournier; M. Hoffmann, Hawkes processes on large networks, Ann. Appl. Probab., 26, 216-261 (2016) · Zbl 1334.60082 · doi:10.1214/14-AAP1089
[112] M. G. Delgadino; R. S. Gvalani; G. A. Pavliotis, On the diffusive-mean field limit for weakly interacting diffusions exhibiting phase transitions, Arch. Ration. Mech. Anal., 241, 91-148 (2021) · Zbl 07364831 · doi:10.1007/s00205-021-01648-1
[113] M. G. Delgadino, R. S. Gvalani, G. A. Pavliotis and S. A. Smith, Phase transitions, logarithmic Sobolev inequalities, and uniform-in-time propagation of chaos for weakly interacting diffusions, preprint, arXiv: 2112.06304
[114] L. Desvillettes; C. Graham; S. Méléard, Probabilistic interpretation and numerical approximation of a Kac equation without cut-off, Stochastic Process. Appl., 84, 115-135 (1999) · Zbl 1009.76081 · doi:10.1016/S0304-4149(99)00056-3
[115] A. Diez, Propagation of chaos and moderate interaction for a piecewise deterministic system of geometrically enriched particles, Electron. J. Probab., 25, 1-38 (2020) · Zbl 1448.35507 · doi:10.1214/20-ejp496
[116] G. Dimarco; S. Motsch, Self-alignment driven by jump processes: Macroscopic limit and numerical investigation, Math. Models Methods Appl. Sci., 26, 1385-1410 (2016) · Zbl 1341.35170 · doi:10.1142/S0218202516500330
[117] G. Dimarco; L. Pareschi, Numerical methods for kinetic equations, Acta Numerica, 23, 369-520 (2014) · Zbl 1398.65260 · doi:10.1017/S0962492914000063
[118] Z. Ding; Q. Li, Ensemble Kalman inversion: Mean-field limit and convergence analysis, Stat. Comput., 31, 9 (2021) · Zbl 1462.62023 · doi:10.1007/s11222-020-09976-0
[119] Z. Ding; Q. Li, Ensemble Kalman sampler: Mean-field limit and convergence analysis, SIAM J. Math. Anal., 53, 1546-1578 (2021) · Zbl 1468.35205 · doi:10.1137/20M1339507
[120] R. L. Dobrushin, Vlasov equations, Funct. Anal. Appl., 13, 115-123 (1979) · Zbl 0422.35068 · doi:10.1007/BF01077243
[121] P. Donnelly; T. G. Kurtz, A countable representation of the Fleming-Viot measure-valued diffusion, Ann. Probab., 24, 698-742 (1996) · Zbl 0869.60074 · doi:10.1214/aop/1039639359
[122] M. R. D’Orsogna; Y. L. Chuang; A. L. Bertozzi; L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96, 104302 (2006) · Zbl 1375.82103 · doi:10.1016/j.physd.2007.05.007
[123] A. Doucet, N. Freitas and N. Gordon (eds.), Sequential Monte Carlo Methods in Practice, Information Science and Statistics, Springer-Verlag New York, 2001. · Zbl 0967.00022
[124] S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, New York, 2003. · Zbl 1094.34001
[125] M. Duerinckx, Mean-field limits for some Riesz interaction gradient flows, SIAM J. Math. Anal., 48, 2269-2300 (2016) · Zbl 1348.82050 · doi:10.1137/15M1042620
[126] B. Düring, N. Georgiou, S. Merino-Aceituno and E. Scalas, Continuum and thermodynamic limits for a simple random-exchange model, preprint, arXiv: 2003.00930 · Zbl 1489.60122
[127] B. Düring; M. Torregrossa; M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling the Elo rating system with learning effects, J. Nonlinear Sci., 29, 1095-1128 (2019) · Zbl 1421.35372 · doi:10.1007/s00332-018-9512-8
[128] A. Durmus, A. Eberle, A. Guillin and K. Schuh, Sticky nonlinear SDEs and convergence of McKean-Vlasov equations without confinement, preprint, arXiv: 2201.07652
[129] A. Durmus; A. Eberle; A. Guillin; R. Zimmer, An elementary approach to uniform in time propagation of chaos, Proc. Amer. Math. Soc., 148, 5387-5398 (2020) · Zbl 1471.60123 · doi:10.1090/proc/14612
[130] A. Eberle, Reflection couplings and contraction rates for diffusions, Probab. Theory Related Fields, 166, 851-886 (2016) · Zbl 1367.60099 · doi:10.1007/s00440-015-0673-1
[131] A. Eberle; A. Guillin; R. Zimmer, Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes, Trans. Amer. Math. Soc., 371, 7135-7173 (2019) · Zbl 1481.60154 · doi:10.1090/tran/7576
[132] A. Eberle; R. Zimmer, Sticky couplings of multidimensional diffusions with different drifts, Ann. Inst. H. Poincaré Probab. Statist., 55, 2370-2394 (2019) · Zbl 1434.60213
[133] X. Erny, Well-posedness and propagation of chaos for McKean-Vlasov equations with jumps and locally Lipschitz coefficients, preprint, arXiv: 2102.06472 · Zbl 1491.60139
[134] A. Etheridge, An Introduction to Superprocesses, University Lecture Series, 20, American Mathematical Society, Providence, RI, 2000. · Zbl 0971.60053
[135] A. Etheridge, Some Mathematical Models from Population Genetics. École d’Été de Probabilités de Saint-Flour XXXIX-2009, Lecture Notes in Mathematics, 2012, Springer Berlin Heidelberg, 2011. · Zbl 1320.92003
[136] S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley series in probability and mathematical statistics, Wiley, New York, 1986. · Zbl 0592.60049
[137] R. Ferland; X. Fernique; G. Giroux, Compactness of the fluctuations associated with some generalized nonlinear Boltzmann equations, Canad. J. Math., 44, 1192-1205 (1992) · Zbl 0767.60097 · doi:10.4153/CJM-1992-071-1
[138] B. Fernandez; S. Méléard, A Hilbertian approach for fluctuations on the McKean-Vlasov model, Stochastic Process. Appl., 71, 33-53 (1997) · Zbl 0939.60048 · doi:10.1016/S0304-4149(97)00067-7
[139] R. C. Fetecau; H. Huang; W. Sun, Propagation of chaos for the Keller-Segel equation over bounded domains, J. Differential Equations, 266, 2142-2174 (2019) · Zbl 1421.35381 · doi:10.1016/j.jde.2018.08.024
[140] A. Figalli; M.-J. Kang; J. Morales, Global well-posedness of the spatially homogeneous Kolmogorov-Vicsek model as a gradient flow, Arch. Ration. Mech. Anal., 227, 869-896 (2018) · Zbl 1384.35130 · doi:10.1007/s00205-017-1176-2
[141] W. H. Fleming; M. Viot, Some measure-valued Markov processes in population genetics theory, Indiana Univ. Math. J., 28, 817-843 (1979) · Zbl 0444.60064 · doi:10.1512/iumj.1979.28.28058
[142] J. Fontbona; H. Guérin; S. Méléard, Measurability of optimal transportation and convergence rate for Landau type interacting particle systems, Probab. Theory Related Fields, 143, 329-351 (2009) · Zbl 1183.60037 · doi:10.1007/s00440-007-0128-4
[143] M. Fornasier; H. Huang; L. Pareschi; P. Sünnen, Consensus-based optimization on hypersurfaces: Well-posedness and mean-field limit, Math. Models Methods Appl. Sci., 30, 2725-2751 (2020) · Zbl 1467.90039 · doi:10.1142/S0218202520500530
[144] N. Fournier, Particle approximation of some Landau equations, Kinet. Relat. Models, 2, 451-464 (2009) · Zbl 1197.82090 · doi:10.3934/krm.2009.2.451
[145] N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure, Probab. Theory Related Fields, 162 (2015), 707-738, Publisher: Springer. · Zbl 1325.60042
[146] N. Fournier; A. Guillin, From a Kac-like particle system to the Landau equation for hard potentials and Maxwell molecules, Ann. Sci. Éc. Norm. Supér., 50, 157-199 (2017) · Zbl 1371.82086
[147] N. Fournier; M. Hauray, Propagation of chaos for the Landau equation with moderately soft potentials, Ann. Probab., 44, 3581-3660 (2016) · Zbl 1362.82045 · doi:10.1214/15-AOP1056
[148] N. Fournier; M. Hauray; S. Mischler, Propagation of chaos for the 2D viscous vortex model, J. Eur. Math. Soc., 16, 1423-1466 (2014) · Zbl 1299.76040 · doi:10.4171/JEMS/465
[149] N. Fournier; B. Jourdain, Stochastic particle approximation of the Keller-Segel equation and two-dimensional generalization of Bessel processes, Ann. Appl. Probab., 27, 2807-2861 (2017) · Zbl 1447.65106 · doi:10.1214/16-AAP1267
[150] N. Fournier and E. Löcherbach, On a toy model of interacting neurons, Ann. Inst. Henri Poincar{é} Probab. Stat., 52 (2016), 1844-1876, https://projecteuclid.org/journals/annales-de-linstitut-henri-poincare-probabilites-et-statistiques/volume-52/issue-4/On-a-toy-model-of-interacting-neurons/10.1214/15-AIHP701.full. · Zbl 1355.92014
[151] N. Fournier; S. Méléard, A Markov process associated with a Boltzmann equation without cutoff and for non-Maxwell molecules, J. Stat. Phys., 104, 359-385 (2001) · Zbl 1034.82047 · doi:10.1023/A:1010322130480
[152] N. Fournier; S. Méléard, Monte-Carlo approximations and fluctuations for 2D Boltzmann equations without cutoff, Markov Process. Related Fields, 7, 159-191 (2001) · Zbl 0972.60098
[153] N. Fournier; S. Méléard, Monte-Carlo approximations for 2d homogeneous Boltzmann equations without cutoff and for non Maxwell molecules, Monte Carlo Methods Appl., 7, 177-192 (2001) · Zbl 1039.82036 · doi:10.1515/mcma.2001.7.1-2.177
[154] N. Fournier; S. Méléard, A stochastic particle numerical method for 3D Boltzmann equations without cutoff, Math. Comp., 71, 583-604 (2002) · Zbl 0990.60085 · doi:10.1090/S0025-5718-01-01339-4
[155] N. Fournier; S. Mischler, Rate of convergence of the Nanbu particle system for hard potentials and Maxwell molecules, Ann. Probab., 44, 589-627 (2016) · Zbl 1341.82060 · doi:10.1214/14-AOP983
[156] M. Friesen; O. Kutoviy, Stochastic Cucker-Smale flocking dynamics of jump-type, Kinet. Relat. Models, 13, 211-247 (2020) · Zbl 1437.35661 · doi:10.3934/krm.2020008
[157] T. Funaki, A certain class of diffusion processes associated with nonlinear parabolic equations, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 67, 331-348 (1984) · Zbl 0546.60081
[158] I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics, 18, European Mathematical Society, 2014. · Zbl 1315.82001
[159] A. Garbuno-Inigo; F. Hoffmann; W. Li; A. M. Stuart, Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler, SIAM J. Appl. Dyn. Syst., 19, 412-441 (2020) · Zbl 1447.65119 · doi:10.1137/19M1251655
[160] J. Gärtner, On the McKean-Vlasov limit for interacting diffusions, Math. Nachr., 137, 197-248 (1988) · Zbl 0678.60100 · doi:10.1002/mana.19881370116
[161] G. Giacomin; K. Pakdaman; X. Pellegrin, Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators, Nonlinearity, 25, 1247-1273 (2012) · Zbl 1244.37048 · doi:10.1088/0951-7715/25/5/1247
[162] C. R. Givens and R. M. Shortt, A class of Wasserstein metrics for probability distributions, Michigan Math. J., 31 (1984), 231-240, https://projecteuclid.org/journals/michigan-mathematical-journal/volume-31/issue-2/A-class-of-Wasserstein-metrics-for-probability-distributions/10.1307/mmj/1029003026.full. · Zbl 0582.60002
[163] D. Godinho; C. Quiñinao, Propagation of chaos for a subcritical Keller-Segel model, Ann. Inst. Henri Poincaré Probab. Stat., 51, 965-992 (2015) · Zbl 1342.65234
[164] F. Golse, De Newton à Boltzmann et Einstein: Validation des modèles cinétiques et de diffusion, d’après T. Bodineau, I. Gallagher, L. Saint-Raymond, B. Texier, in Séminaire Bourbaki, Volume 2013/2014, Exposés 1074-1088, vol. 367-368, Astérisque, Société Mathématique de France, 2015,285-326. · Zbl 1356.76002
[165] F. Golse, On the dynamics of large particle systems in the mean field limit, Lecture notes, arXiv: 1301.5494. · Zbl 1211.82037
[166] H. Grad, Principles of the kinetic theory of gases, in Thermodynamics of Gases (ed. S. Flügge), Encyclopedia of Physics, 12, Springer-Verlag Berlin Heidelberg, 1958,205-294.
[167] H. Grad, Asymptotic theory of Boltzmann equation, Phys. Fluids, 6, 147-181 (1963) · Zbl 0115.45006 · doi:10.1063/1.1706716
[168] C. Graham, McKean-Vlasov Itō-Skorohod equations, and nonlinear diffusions with discrete jump sets, Stochastic Process. Appl., 40, 69-82 (1992) · Zbl 0749.60096 · doi:10.1016/0304-4149(92)90138-G
[169] C. Graham; S. Méléard, Stochastic particle approximations for generalized Boltzmann models and convergence estimates, Ann. Probab., 25, 115-132 (1997) · Zbl 0873.60076 · doi:10.1214/aop/1024404281
[170] S. Grassi; L. Pareschi, From particle swarm optimization to consensus based optimization: Stochastic modeling and mean-field limit, Math. Models Methods Appl. Sci., 31, 1625-1657 (2021) · Zbl 1473.35570 · doi:10.1142/S0218202521500342
[171] L. Greengard; V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73, 325-348 (1987) · Zbl 0629.65005 · doi:10.1016/0021-9991(87)90140-9
[172] F. A. Grünbaum, Propagation of chaos for the Boltzmann equation, Arch. Ration. Mech. Anal., 42, 323-345 (1971) · Zbl 0236.45011 · doi:10.1007/BF00250440
[173] H. Guérin and S. Méléard, Convergence from Boltzmann to Landau processes with soft potential and particle approximations, J. Stat. Phys., 111 (2003), 931-966, http://link.springer.com/10.1023/A:1022858517569. · Zbl 1031.82035
[174] A. Guillin, P. L. Bris and P. Monmarché, Uniform in time propagation of chaos for the 2D vortex model and other singular stochastic systems, preprint, arXiv: 2108.08675
[175] A. Guillin, P. Le Bris and P. Monmarché, Convergence rates for the Vlasov-Fokker-Planck equation and uniform in time propagation of chaos in non convex cases, preprint, arXiv: 2105.09070
[176] A. Guillin, W. Liu, L. Wu and C. Zhang, Uniform Poincaré and logarithmic Sobolev inequalities for mean field particles systems, preprint, arXiv: 1909.07051 · Zbl 1503.60150
[177] A. Guillin; P. Monmarché, Uniform long-time and propagation of chaos estimates for mean field kinetic particles in non-convex landscapes, J. Stat. Phys., 185, 1-20 (2020) · Zbl 1515.82069 · doi:10.1007/s10955-021-02839-6
[178] S.-Y. Ha; K. Lee; D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7, 453-469 (2009) · Zbl 1192.34067 · doi:10.4310/CMS.2009.v7.n2.a9
[179] J. Haskovec, Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions, Phys. D, 261, 42-51 (2013) · Zbl 1310.92062 · doi:10.1016/j.physd.2013.06.006
[180] J. Haškovec; C. Schmeiser, Convergence of a stochastic particle approximation for measure solutions of the 2D Keller-Segel system, Comm. Partial Differential Equations, 36, 940-960 (2011) · Zbl 1229.35111 · doi:10.1080/03605302.2010.538783
[181] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109 (1970) · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[182] M. Hauray; P.-E. Jabin, N-particles approximation of the Vlasov equations with singular potential, Arch. Ration. Mech. Anal., 183, 489-524 (2007) · Zbl 1107.76066 · doi:10.1007/s00205-006-0021-9
[183] M. Hauray; P.-E. Jabin, Particles approximations of Vlasov equations with singular forces: Propagation of chaos, Ann. Sci. Éc. Norm. Supér., 48, 891-940 (2015) · Zbl 1329.35309
[184] M. Hauray; S. Mischler, On Kac’s chaos and related problems, J. Funct. Anal., 266, 6055-6157 (2014) · Zbl 1396.60102 · doi:10.1016/j.jfa.2014.02.030
[185] S. Herrmann; J. Tugaut, Non-uniqueness of stationary measures for self-stabilizing processes, Stochastic Process. Appl., 120, 1215-1246 (2010) · Zbl 1197.60052 · doi:10.1016/j.spa.2010.03.009
[186] D. Heydecker, Pathwise convergence of the hard spheres Kac process, Ann. Appl. Probab., 29, 3062-3127 (2019) · Zbl 1442.60099 · doi:10.1214/19-AAP1475
[187] D. Heydecker, Kac’s process with hard potentials and a moderate angular singularity, arXiv: 2008.12943. · Zbl 07525966
[188] M. Hitsuda; I. Mitoma, Tightness problem and stochastic evolution equation arising from fluctuation phenomena for interacting diffusions, J. Multivariate Anal., 19, 311-328 (1986) · Zbl 0604.60059 · doi:10.1016/0047-259X(86)90035-7
[189] T. Holding, Propagation of chaos for Hölder continuous interaction kernels via Glivenko-Cantelli, arXiv: 1608.02877.
[190] H. Huang; J.-G. Liu; P. Pickl, On the mean-field limit for the Vlasov-Poisson-Fokker-Planck system, J. Stat. Phys., 181, 1915-1965 (2020) · Zbl 1466.35344 · doi:10.1007/s10955-020-02648-3
[191] P.-E. Jabin, A review of the mean field limits for Vlasov equations, Kinet. Relat. Models, 7, 661-711 (2014) · Zbl 1318.35129 · doi:10.3934/krm.2014.7.661
[192] P.-E. Jabin; S. Junca, A continuous model for ratings, SIAM J. Appl. Math., 75, 420-442 (2015) · Zbl 1321.35243 · doi:10.1137/140969324
[193] P.-E. Jabin; Z. Wang, Mean field limit and propagation of chaos for Vlasov systems with bounded forces, J. Funct. Anal., 271, 3588-3627 (2016) · Zbl 1388.60163 · doi:10.1016/j.jfa.2016.09.014
[194] P.-E. Jabin; Z. Wang, Quantitative estimates of propagation of chaos for stochastic systems with \(\begin{document} W^{ -1, \infty} \end{document}\) kernels, Invent. Math., 214, 523-591 (2018) · Zbl 1402.35208 · doi:10.1007/s00222-018-0808-y
[195] J.-F. Jabir, Rate of propagation of chaos for diffusive stochastic particle systems via Girsanov transformation, preprint, arXiv: 1907.09096
[196] J.-F. Jabir; D. Talay; M. Tomašević, Mean-field limit of a particle approximation of the one-dimensional parabolic-parabolic Keller-Segel model without smoothing, Electron. Commun. Probab., 23, 1-14 (2018) · Zbl 1402.60129 · doi:10.1214/18-ECP183
[197] J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Second edition edition, Grundlehren der mathematischen Wissenschaften, 288, Springer Berlin Heidelberg, 2003. · Zbl 1018.60002
[198] A. Jakubowski, On the Skorokhod topology, Ann. Inst. Henri Poincaré Probab. Stat., 22, 263-285 (1986) · Zbl 0609.60005
[199] A. Joffe; M. Métivier, Weak convergence of sequences of semimartingales with applications to multitype branching processes, Adv. in Appl. Probab., 18, 20-65 (1986) · Zbl 0595.60008 · doi:10.2307/1427238
[200] B. Jourdain, Diffusions with a nonlinear irregular drift coefficient and probabilistic interpretation of generalized Burgers’ equations, ESAIM Probab. Stat., 1, 339-355 (1997) · Zbl 0929.60062 · doi:10.1051/ps:1997113
[201] B. Jourdain; T. Lelièvre; B. Miasojedow, Optimal scaling for the transient phase of Metropolis Hastings algorithms: The longtime behavior, Bernoulli, 20, 1930-1978 (2014) · Zbl 1329.60261 · doi:10.3150/13-BEJ546
[202] B. Jourdain; T. Lelièvre; B. Miasojedow, Optimal scaling for the transient phase of the random walk metropolis algorithm: The mean-field limit, Ann. Appl. Probab., 25, 2263-2300 (2015) · Zbl 1329.60262 · doi:10.1214/14-AAP1048
[203] B. Jourdain and S. Méléard, Propagation of chaos and fluctuations for a moderate model with smooth initial data, Ann. Inst. Henri Poincaré Probab. Stat., 34 (1998), 727-766, Publisher: Gauthier-Villars. · Zbl 0921.60053
[204] M. Kac, Foundations of kinetic theory, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3, University of California Press Berkeley and Los Angeles, California, 1956,171-197. · Zbl 0072.42802
[205] M. Kac, Some Probabilistic Aspects of the Boltzmann Equation, in The Boltzmann Equation. Acta Physica Austriaca (Supplementum X Proceedings of the International Symposium “100 Years Boltzmann Equation” in Vienna 4th-8th September 1972) (eds. E. G. D. Cohen and W. Thirring), Springer Vienna, 1973,379-400, http://link.springer.com/10.1007/978-3-7091-8336-6_17.
[206] M.-J. Kang and J. Morales, Dynamics of a spatially homogeneous Vicsek model for oriented particles on the plane, preprint, arXiv: 1608.00185
[207] N. Kantas; A. Doucet; S. S. Singh; J. M. Maciejowski, An overview of sequential Monte Carlo methods for parameter estimation in general state-space models, IFAC Proceedings Volumes, 42, 774-785 (2009) · doi:10.3182/20090706-3-FR-2004.00129
[208] J. Kennedy and R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95 - International Conference on Neural Networks, 4, IEEE, Perth, WA, Australia, 1995, 1942-1948.
[209] F. G. King, BBGKY Hierarchy for Positive Potentials, Ph.D Thesis, University of California,, Berkeley, 1975.
[210] D. Lacker, On a strong form of propagation of chaos for McKean-Vlasov equations, Electron. Commun. Probab., 23, 1-11 (2018) · Zbl 1396.65013 · doi:10.1214/18-ECP150
[211] D. Lacker, Hierarchies, entropy, and quantitative propagation of chaos for mean field diffusions, preprint, arXiv: 2105.02983
[212] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Soc, 1968. · Zbl 0174.15403
[213] O. E. Lanford, Time evolution of large classical systems, in Dynamical Systems Theory and Application, Battelle Seattle 1974 Rencontres (ed. J. Moser), Springer-Verlag Berlin Heidelberg, 1975. · Zbl 0329.70011
[214] D. Lazarovici; P. Pickl, A mean field limit for the Vlasov-poisson system, Arch. Ration. Mech. Anal., 225, 1201-1231 (2017) · Zbl 1375.35556 · doi:10.1007/s00205-017-1125-0
[215] C. Léonard, Une loi des grands nombres pour des systèmes de diffusions avec interaction et à coefficients non bornés, Ann. Inst. Henri Poincaré Probab. Stat., 22, 237-262 (1986) · Zbl 0597.60053
[216] J.-G. Liu; R. Yang, Propagation of chaos for large Brownian particle system with Coulomb interaction, Res. Math. Sci., 3, 40 (2016) · Zbl 1355.82025 · doi:10.1186/s40687-016-0086-5
[217] J.-G. Liu; R. Yang, Propagation of chaos for the Keller-Segel equation with a logarithmic cut-off, Methods Appl. Anal., 26, 319-348 (2019) · Zbl 1442.35199 · doi:10.4310/MAA.2019.v26.n4.a2
[218] W. Liu; L. Wu; C. Zhang, Long-time behaviors of mean-field interacting particle systems related to McKean-Vlasov equations, Commun. Math. Phys., 387, 179-214 (2021) · Zbl 1475.60128 · doi:10.1007/s00220-021-04198-5
[219] E. Luçon, Large population asymptotics for interacting diffusions in a quenched random environment, in From Particle Systems to Partial Differential Equations Ⅱ (eds. P. Gonçalves and A. J. Soares), Springer Proceedings in Mathematics & Statistics, 129, Springer, Cham, 2015,231-251. · Zbl 1342.60176
[220] F. Malrieu, Logarithmic Sobolev inequalities for some nonlinear PDE’s, Stochastic Process. Appl., 95, 109-132 (2001) · Zbl 1059.60084 · doi:10.1016/S0304-4149(01)00095-3
[221] F. Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes, Ann. Appl. Probab., 13, 540-560 (2003) · Zbl 1031.60085 · doi:10.1214/aoap/1050689593
[222] C. Marchioro; M. Pulvirenti, Hydrodynamics in two dimensions and vortex theory, Comm. Math. Phys., 84, 483-503 (1982) · Zbl 0527.76021 · doi:10.1007/BF01209630
[223] D. Matthes; G. Toscani, On steady distributions of kinetic models of conservative economies, J. Stat. Phys., 130, 1087-1117 (2008) · Zbl 1138.91020 · doi:10.1007/s10955-007-9462-2
[224] H. P. McKean, An exponential formula for solving Boltzmann’s equation for a Maxwellian gas, Journal of Combinatorial Theory, 2, 358-382 (1967) · Zbl 0152.46501 · doi:10.1016/S0021-9800(67)80035-8
[225] H. P. McKean, Propagation of chaos for a class of non-linear parabolic equations, in Stochastic Differential Equations, Lecture Series in Differential Equations, Session 7, Catholic Univ., Air Force Office of Scientific Research, Office of Aerospace Research, Arlington, Va., 1967, 41-57.
[226] H. P. McKean, Propagation of chaos for a class of non-linear parabolic equations, in Lecture Series in Differential Equations, Volume 2 (ed. A. K. Aziz), Van Nostrand Mathematical Studies, 19, Van Nostrand Reinhold Company, 1969,177-194. · Zbl 0181.44401
[227] H. P. McKean, Fluctuations in the kinetic theory of gases, Commun. Pure Appl. Math., 28, 435-455 (1975) · doi:10.1002/cpa.3160280402
[228] S. Mei, A. Montanari and P.-M. Nguyen, A mean field view of the landscape of two-layer neural networks, Proc. Natl. Acad. Sci. USA, 115 (2018), E7665-E7671, http://www.pnas.org/lookup/doi/10.1073/pnas.1806579115. · Zbl 1416.92014
[229] S. Méléard, Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, in Probabilistic Models for Nonlinear Partial Differential Equations (eds. D. Talay and L. Tubaro), Lecture Notes in Mathematics, 1627, Springer-Verlag Berlin Heidelberg, 1996. · Zbl 0864.60077
[230] S. Méléard, Convergence of the fluctuations for interaction diffusions with jumps associated with Boltzmann equations, Stochastics, 63, 195-225 (1998) · Zbl 0905.60073 · doi:10.1080/17442509808834148
[231] S. Méléard, Stochastic approximations of the solution of a full Boltzmann equation with small initial data, ESAIM Probab. Stat., 2, 23-40 (1998) · Zbl 0980.62069 · doi:10.1051/ps:1998102
[232] S. Méléard, A trajectorial proof of the vortex method for the two-dimensional Navier-Stokes equation, Ann. Appl. Probab., 10, 1197-1211 (2000) · Zbl 1073.76543 · doi:10.1214/aoap/1019487613
[233] S. Méléard, Monte-Carlo approximations for 2d Navier-Stokes equations with measure initial data, Probab. Theory Related Fields, 121, 367-388 (2001) · Zbl 0993.60099 · doi:10.1007/s004400100154
[234] S. Méléard; S. Roelly-Coppoletta, A propagation of chaos result for a system of particles with moderate interaction, Stochastic Processes and their Applications, 26, 317-332 (1987) · Zbl 0633.60108 · doi:10.1016/0304-4149(87)90184-0
[235] S. Méléard; S. Roelly-Coppoletta, Systèmes de particules et mesures-martingales: Un théorème de propagation du chaos, Séminaire de probabilités (Strasbourg), 22, 438-448 (1988) · Zbl 0645.60106
[236] S. Merino-Aceituno, Isotropic wave turbulence with simplified kernels: Existence, uniqueness, and mean-field limit for a class of instantaneous coagulation-fragmentation processes, J. Math. Phys., 57, 121501 (2016) · Zbl 1398.76062 · doi:10.1063/1.4968814
[237] N. Metropolis; A. W. Rosenbluth; M. N. Rosenbluth; A. H. Teller; E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1092 (1953) · Zbl 1431.65006 · doi:10.2172/4390578
[238] N. Metropolis; S. Ulam, The Monte Carlo method, J. Amer. Statist. Assoc., 44, 335-341 (1949) · Zbl 0033.28807 · doi:10.1080/01621459.1949.10483310
[239] S. Mischler and C. Mouhot, Kac’s program in kinetic theory, Invent. Math., 193 (2013), 1-147, Publisher: Springer. · Zbl 1274.82048
[240] S. Mischler; C. Mouhot; B. Wennberg, A new approach to quantitative propagation of chaos for drift, diffusion and jump processes, Probab. Theory Related Fields, 161, 1-59 (2015) · Zbl 1333.60174 · doi:10.1007/s00440-013-0542-8
[241] Y. S. Mishura; A. Y. Veretennikov, Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations, Theor. Probability and Math. Statist., 103, 59-101 (2020) · Zbl 1482.60079 · doi:10.1090/tpms/1135
[242] P. Monmarché, Long-time behaviour and propagation of chaos for mean field kinetic particles, Stochastic Process. Appl., 127, 1721-1737 (2017) · Zbl 1367.60121 · doi:10.1016/j.spa.2016.10.003
[243] C. Mouhot; L. Pareschi, Fast algorithms for computing the Boltzmann collision operator, Math. Comp., 75, 1833-1852 (2006) · Zbl 1105.76043 · doi:10.1090/S0025-5718-06-01874-6
[244] A. Muntean and F. Toschi (eds.), Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation, CISM International Centre for Mechanical Sciences, 553, Springer, Vienna, 2014.
[245] H. Murata, Propagation of chaos for Boltzmann-like equation of non-cutoff type in the plane, Hiroshima Math. J., 7 (1977), 479-515, https://projecteuclid.org/euclid.hmj/1206135751. · Zbl 0369.60119
[246] G. Naldi, L. Pareschi and G. Toscani (eds.), Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, 2010. · Zbl 1200.91010
[247] K. Nanbu, Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent gases, Journal of the Physical Society of Japan, 49, 2042-2049 (1980) · doi:10.1143/JPSJ.49.2042
[248] K. Oelschläger, A Martingale approach to the law of large numbers for weakly interacting stochastic processes, Ann. Probab., 12 (1984), 458-479, https://projecteuclid.org/euclid.aop/1176993301. · Zbl 0544.60097
[249] K. Oelschläger, A law of large numbers for moderately interacting diffusion processes, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 69 (1985), 279-322, Publisher: Springer Nature America, Inc. · Zbl 0549.60071
[250] K. Oelschläger, A fluctuation theorem for moderately interacting diffusion processes, Probab. Theory Related Fields, 74, 591-616 (1987) · Zbl 0592.60064 · doi:10.1007/BF00363518
[251] K. Oelschläger, On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes, Probab. Theory Related Fields, 82, 565-586 (1989) · Zbl 0673.60110 · doi:10.1007/BF00341284
[252] H. Osada, Propagation of chaos for the two dimensional Navier-Stokes equation, Proc. Japan Acad. Ser. A Math. Sci., 62, 8-11 (1986) · Zbl 0679.76033
[253] H. Osada; S. Kotani, Propagation of chaos for the Burgers equation, J. Math. Soc. Japan, 37, 275-294 (1985) · Zbl 0603.60072 · doi:10.2969/jmsj/03720275
[254] K. Pakdaman; B. Perthame; D. Salort, Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation, J. Math. Neurosci., 4, 1-26 (2014) · Zbl 1333.92009 · doi:10.1186/2190-8567-4-14
[255] L. Pareschi and T. Rey, On the stability of equilibrium preserving spectral methods for the homogeneous Boltzmann equation, Appl. Math. Lett., 120 (2021), 107187, arXiv: 2011.05811. · Zbl 1483.76044
[256] L. Pareschi; G. Russo, An introduction to Monte Carlo method for the Boltzmann equation, ESAIM Proc., 10, 35-75 (2001) · Zbl 0982.65145 · doi:10.1051/proc:2001004
[257] G. A. Pavliotis; A. M. Stuart; U. Vaes, Derivative-free Bayesian inversion using multiscale dynamics, SIAM J. Appl. Dyn. Syst., 21, 284-326 (2022) · Zbl 1493.62132 · doi:10.1137/21M1397416
[258] L. Pédèches, Asymptotic properties of various stochastic Cucker-Smale dynamics, Discrete Contin. Dyn. Syst., 38, 2731-2762 (2018) · Zbl 1410.60097 · doi:10.3934/dcds.2018115
[259] R. Pinnau; C. Totzeck; O. Tse; S. Martin, A consensus-based model for global optimization and its mean-field limit, Math. Models Methods Appl. Sci., 27, 183-204 (2017) · Zbl 1388.90098 · doi:10.1142/S0218202517400061
[260] M. Pulvirenti, Kinetic limits for stochastic particle systems, in Probabilistic Models for Nonlinear Partial Differential Equations (eds. D. Talay and L. Tubaro), Lecture Notes in Mathematics, 1627, Springer-Verlag Berlin Heidelberg, 1996. · Zbl 0872.60083
[261] M. Pulvirenti; S. Simonella, The Boltzmann-Grad limit of a hard sphere system: analysis of the correlation error, Invent. Math., 207, 1135-1237 (2017) · Zbl 1372.35211 · doi:10.1007/s00222-016-0682-4
[262] S. Reich; S. Weissmann, Fokker-Planck particle systems for Bayesian inference: Computational approaches, SIAM/ASA J. Uncertain. Quantif., 9, 446-482 (2021) · Zbl 1473.65274 · doi:10.1137/19M1303162
[263] S. Roelly-Coppoletta, A criterion of convergence of measure-valued processes: Application to measure branching processes, Stochastics, 17, 43-65 (1986) · Zbl 0598.60088 · doi:10.1080/17442508608833382
[264] G. M. Rotskoff and E. Vanden-Eijnden, Trainability and accuracy of neural networks: An interacting particle system approach, preprint, arXiv: 1805.00915
[265] M. Rousset, A N-uniform quantitative Tanaka’s theorem for the conservative Kac’s N-particle system with Maxwell molecules, preprint, arXiv: 1407.1965
[266] C. Saffirio, Derivation of the Boltzmann equation: Hard spheres, short-range potentials and beyond, in From Particle Systems to Partial Differential Equations Ⅲ (eds. P. Gon¸calves and A. J. Soares), Springer Proceedings in Mathematics & Statistics, 162, Springer International Publishing, 2016,301-321, Series Title: Springer Proceedings in Mathematics & Statistics. · Zbl 1353.35219
[267] S. Salem, A gradient flow approach to propagation of chaos, Discrete Contin. Dyn. Syst., 40, 5729-5754 (2020) · Zbl 1454.60145 · doi:10.3934/dcds.2020243
[268] S. Serfaty, Systems of points with Coulomb interactions, in Proceedings of the International Congress of Mathematicians (ICM 2018), World Scientific, Rio de Janeiro, Brazil, 2019,935-977, https://www.worldscientific.com/doi/abs/10.1142/9789813272880_0033. · Zbl 1458.60106
[269] S. Serfaty, Mean field limit for Coulomb-type flows, Duke Math. J., 169 (2020), 2887-2935, https://projecteuclid.org/journals/duke-mathematical-journal/volume-169/issue-15/Mean-field-limit-for-Coulomb-type-flows/10.1215/00127094-2020-0019.full. · Zbl 1475.35341
[270] T. Shiga; H. Tanaka, Central limit theorem for a system of Markovian particles with mean field interactions, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 69, 439-459 (1985) · Zbl 0607.60095
[271] J. Sirignano and K. Spiliopoulos, Mean field analysis of neural networks: A law of large numbers, SIAM J. Appl. Math., 80 (2020), 725-752, https://epubs.siam.org/doi/10.1137/18M1192184. · Zbl 1440.60008
[272] A.-S. Sznitman, Équations de type de Boltzmann, spatialement homogènes, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 66, 559-592 (1984) · Zbl 0553.60069
[273] A.-S. Sznitman, Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated, J. Funct. Anal., 56, 311-336 (1984) · Zbl 0547.60080 · doi:10.1016/0022-1236(84)90080-6
[274] A.-S. Sznitman, A propagation of chaos result for Burgers’ equation, Probab. Theory Related Fields, 71, 581-613 (1986) · Zbl 0597.60055 · doi:10.1007/BF00699042
[275] A.-S. Sznitman, Topics in propagation of chaos, in Éc. Été Probab. St.-Flour XIX-1989, Springer, 1991,165-251. · Zbl 0732.60114
[276] D. Talay and M. Tomašević, A new McKean-Vlasov stochastic interpretation of the parabolic-parabolic Keller-Segel model: The one-dimensional case, Bernoulli, 26 (2020), 1323-1353, https://doi.org/10.3150/19-BEJ1158. · Zbl 1470.92043
[277] H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 46, 67-105 (1978) · Zbl 0389.60079
[278] H. Tanaka, Fluctuation theory for Kac’s one-dimensional model of Maxwellian molecules, Sankhyė: The Indian Journal of Statistics, Series A, 44, 23-46 (1982) · Zbl 0586.60081
[279] H. Tanaka, Limit theorems for certain diffusion processes with interaction, in Stochastic Analysis, Proceedings of the Taniguchi International Symposium on Stochastic Analysis (ed. K. Itō), 1982,469-488. · Zbl 0552.60051
[280] H. Tanaka, Some probabilistic problems in the spatially homogeneous Boltzmann equation, in Theory and Application of Random Fields, Proceedings of the IFIP-WG 7/1 Working Conference, Bangalore 1982 (ed. G. Kallianpur), Lecture Notes in Control and Information Sciences, Springer-Verlag Berlin Heidelberg, 1983,258-267. · Zbl 0514.60063
[281] H. Tanaka and M. Hitsuda, Central limit theorem for a simple diffusion model of interacting particles, Hiroshima Math. J., 11 (1981), 415-423, https://projecteuclid.org/euclid.hmj/1206134109. · Zbl 0469.60097
[282] M. Tomašević, Propagation of chaos for stochastic particle systems with singular mean-field interaction of \(\begin{document}{L}^{ p }-{L}^q \end{document}\) type, hal preprint: hal-03086253.
[283] M. Tomašević, A new McKean-Vlasov stochastic interpretation of the parabolic-parabolic Keller-Segel model: The two-dimensional case, Ann. Appl. Probab., 31, 432-459 (2021) · Zbl 1479.60147 · doi:10.1214/20-aap1594
[284] G. Toscani, The grazing collisions asymptotics of the non cut-off Kac equation, ESAIM Math. Model. Numer. Anal., 32, 763-772 (1998) · Zbl 0912.76081 · doi:10.1051/m2an/1998320607631
[285] G. Toscani, Kinetic models of opinion formation, Commun. Math. Sci., 4, 481-496 (2006) · Zbl 1195.91128 · doi:10.4310/CMS.2006.v4.n3.a1
[286] G. Toscani; A. Tosin; M. Zanella, Kinetic modelling of multiple interactions in socio-economic systems, Netw. Heterog. Media, 15, 519-542 (2020) · Zbl 1451.35103 · doi:10.3934/nhm.2020029
[287] C. Totzeck, Trends in Consensus-based optimization, preprint, arXiv: 2104.01383 · Zbl 1474.90363
[288] C. Totzeck, R. Pinnau, S. Blauth and S. Schotthöfer, A numerical comparison of consensus-based global optimization to other particle-based global optimization schemes, PAMM. Proc. Appl. Math. Mech., 18 (2018), 1-2, https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201800291.
[289] J. Touboul, Propagation of chaos in neural fields, Ann. Appl. Probab., 24, 1298-1328 (2014) · Zbl 1305.60107 · doi:10.1214/13-AAP950
[290] J. Tugaut, Convergence to the equilibria for self-stabilizing processes in double-well landscape, Ann. Probab., 41, 1427-1460 (2013) · Zbl 1292.60060 · doi:10.1214/12-AOP749
[291] J. Tugaut, Phase transitions of McKean-Vlasov processes in double-wells landscape, Stochastics, 86, 257-284 (2014) · Zbl 1314.60118 · doi:10.1080/17442508.2013.775287
[292] K. Uchiyama, A fluctuation problem associated with the Boltzmann equation for a gas of molecules with a cutoff potential, Japanese Journal of Mathematics. New Series, 9, 27-53 (1983) · Zbl 0524.60099 · doi:10.4099/math1924.9.27
[293] K. Uchiyama, Fluctuations of Markovian systems in Kac’s caricature of a Maxwellian gas, J. Math. Soc. Japan, 35, 477-499 (1983) · Zbl 0513.60080 · doi:10.2969/jmsj/03530477
[294] K. Uchiyama, Derivation of the Boltzmann equation from particle dynamics, Hiroshima Math. J., 18 (1988), 245-297, https://projecteuclid.org/euclid.hmj/1206129724. · Zbl 0656.60110
[295] K. Uchiyama, Fluctuations in a Markovian system of pairwise interacting particles, Probab. Theory Related Fields, 79, 289-302 (1988) · Zbl 0635.60092 · doi:10.1007/BF00320923
[296] A. Y. Veretennikov, On strong solutions and explicit formulas for solutions of stochastic integral equations, Math. USSR Sb., 39 (1981), 387-403, http://stacks.iop.org/0025-5734/39/i=3/a=A05?key=crossref.91586277ed28ea996b4d447d5ac7e93a. · Zbl 0462.60063
[297] A. Y. Veretennikov, On ergodic measures for McKean-Vlasov stochastic equations, in Monte Carlo and Quasi-Monte Carlo Methods 2004 (eds. H. Niederreiter and D. Talay), 2006,471-486. · Zbl 1098.60056
[298] T. Vicsek; A. Czirók; E. Ben-Jacob; I. Cohen; O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75, 1226-1229 (1995) · doi:10.1103/PhysRevLett.75.1226
[299] T. Vicsek; A. Zafeiris, Collective motion, Phys. Rep., 517, 71-140 (2012) · doi:10.1016/j.physrep.2012.03.004
[300] C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics (eds. S. Friedlander and D. Serre), 1, Elsevier Science, 2002, 71-74. · Zbl 1170.82369
[301] C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202, 1-141 (2009) · Zbl 1197.35004 · doi:10.1090/S0065-9266-09-00567-5
[302] C. Villani, Optimal Transport, Old and New, Grundlehren der mathematischen Wissenschaften, 338, Springer-Verlag Berlin Heidelberg, 2009. · Zbl 1156.53003
[303] W. Wagner, A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation, J. Stat. Phys., 66, 1011-1044 (1992) · Zbl 0899.76312 · doi:10.1007/BF01055714
[304] W. Wagner, A functional law of large numbers for Boltzmann type stochastic particle systems, Stoch. Anal. Appl., 14, 591-636 (1996) · Zbl 0874.60027 · doi:10.1080/07362999608809458
[305] F.-Y. Wang, Distribution dependent SDEs for Landau type equations, Stochastic Process. Appl., 128, 595-621 (2018) · Zbl 1380.60077 · doi:10.1016/j.spa.2017.05.006
[306] S. Watanabe, On stochastic differential equations for multi-dimensional diffusion processes with boundary conditions, Kyoto J. Math., 11, 169-180 (1971) · Zbl 0212.20203 · doi:10.1215/kjm/1250523692
[307] L. Xu, Uniqueness and propagation of chaos for the Boltzmann equation with moderately soft potentials, Ann. Appl. Probab., 28, 1136-1189 (2018) · Zbl 1395.82211 · doi:10.1214/17-AAP1327
[308] A. K. Zvonkin, A transformation of the phase space of a diffusion process that removes the drift, Math. USSR Sb., 22 (1974), 129-149, http://stacks.iop.org/0025-5734/22/i=1/a=A08?key=crossref.2ad44b5b66ab0196526fac25037d275d. · Zbl 0306.60049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.