×

Computing equilibrium measures with power law kernels. (English) Zbl 1496.65227

Summary: We introduce a method to numerically compute equilibrium measures for problems with attractive-repulsive power law kernels of the form \(K(x-y) = \frac{|x-y|^\alpha}{\alpha}-\frac{|x-y|^\beta}{\beta}\) using recursively generated banded and approximately banded operators acting on expansions in ultraspherical polynomial bases. The proposed method reduces what is naïvely a difficult to approach optimization problem over a measure space to a straightforward optimization problem over one or two variables fixing the support of the equilibrium measure. The structure and rapid convergence properties of the obtained operators result in high computational efficiency in the individual optimization steps. We discuss stability and convergence of the method under a Tikhonov regularization and use an implementation to showcase comparisons with analytically known solutions as well as discrete particle simulations. Finally, we numerically explore open questions with respect to existence and uniqueness of equilibrium measures as well as gap forming behaviour in parameter ranges of interest for power law kernels, where the support of the equilibrium measure splits into two intervals.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65R20 Numerical methods for integral equations
65K10 Numerical optimization and variational techniques
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization

References:

[1] Ablowitz, Mark J., Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics, xii+647 pp. (2003), Cambridge University Press, Cambridge · Zbl 1088.30001 · doi:10.1017/CBO9780511791246
[2] Balagu\'{e}, D., Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal., 1055-1088 (2013) · Zbl 1311.49053 · doi:10.1007/s00205-013-0644-6
[3] Balagu\'{e}, D., Nonlocal interactions by repulsive-attractive potentials: radial ins/stability, Phys. D, 5-25 (2013) · Zbl 1286.35038 · doi:10.1016/j.physd.2012.10.002
[4] Beals, Richard, Special Functions and Orthogonal Polynomials, Cambridge Studies in Advanced Mathematics, xiii+473 pp. (2016), Cambridge University Press, Cambridge · Zbl 1365.33001 · doi:10.1017/CBO9781316227381
[5] Bertozzi, Andrea L., Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci., 955-985 (2015) · Zbl 1331.35044 · doi:10.4310/CMS.2015.v13.n4.a6
[6] Bezanson, Jeff, Julia: a fresh approach to numerical computing, SIAM Rev., 65-98 (2017) · Zbl 1356.68030 · doi:10.1137/141000671
[7] Ca\~{n}izo, Jos\'{e} A., Existence of compactly supported global minimisers for the interaction energy, Arch. Ration. Mech. Anal., 1197-1217 (2015) · Zbl 1317.82010 · doi:10.1007/s00205-015-0852-3
[8] Carrillo, Jos\'{e} Antonio, Collective Dynamics From Bacteria to Crowds. The derivation of swarming models: mean-field limit and Wasserstein distances, CISM Courses and Lect., 1-46 (2014), Springer, Vienna · doi:10.1007/978-3-7091-1785-9\_1
[9] Carrillo, Jos\'{e} A., Active Particles. Vol. 1. Advances in Theory, Models, and Applications. A review on attractive-repulsive hydrodynamics for consensus in collective behavior, Model. Simul. Sci. Eng. Technol., 259-298 (2017), Birkh\"{a}user/Springer, Cham
[10] Carrillo, Jos\'{e} Antonio, Adhesion and volume constraints via nonlocal interactions determine cell organisation and migration profiles, J. Theoret. Biol., 75-91 (2018) · Zbl 1397.92092 · doi:10.1016/j.jtbi.2018.02.022
[11] Carrillo, J. A., Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 229-271 (2011) · Zbl 1215.35045 · doi:10.1215/00127094-2010-211
[12] Carrillo, Jos\'{e} A., Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Particle, kinetic, and hydrodynamic models of swarming, Model. Simul. Sci. Eng. Technol., 297-336 (2010), Birkh\"{a}user Boston, Boston, MA · Zbl 1211.91213 · doi:10.1007/978-0-8176-4946-3\_12
[13] Carrillo, Jos\'{e} A., Explicit equilibrium solutions for the aggregation equation with power-law potentials, Kinet. Relat. Models, 171-192 (2017) · Zbl 1354.45001 · doi:10.3934/krm.2017007
[14] Carrillo, J. A., Explicit flock solutions for Quasi-Morse potentials, European J. Appl. Math., 553-578 (2014) · Zbl 1304.82049 · doi:10.1017/S0956792514000126
[15] Carrillo, Jos\'{e} A., Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 971-1018 (2003) · Zbl 1073.35127 · doi:10.4171/RMI/376
[16] J. A. Carrillo and R. Shu, From radial symmetry to fractal behavior of aggregation equilibria for repulsive-attractive potentials, 2107.05079v1, 2021.
[17] Choksi, Rustum, On minimizers of interaction functionals with competing attractive and repulsive potentials, Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire, 1283-1305 (2015) · Zbl 1329.49019 · doi:10.1016/j.anihpc.2014.09.004
[18] Colton, David, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, xiv+405 pp. (2013), Springer, New York · Zbl 1266.35121 · doi:10.1007/978-1-4614-4942-3
[19] Deift, P. A., Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics, viii+273 pp. (1999), New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI
[20] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S. Chayes, Self-propelled particles with soft-core interactions: patterns, stability, and collapse, Phys. Rev. Lett. 96 (2006), 104302, DOI 10.1103/PhysRevLett.96.104302.
[21] Erd\'{e}lyi, Arthur, Higher Transcendental Functions. Vol. II, xviii+396 pp. (1981), Robert E. Krieger Publishing Co., Inc., Melbourne, Fla.
[22] Gautschi, Walter, Orthogonal Polynomials: Computation and Approximation, Numerical Mathematics and Scientific Computation, x+301 pp. (2004), Oxford University Press, New York · Zbl 1130.42300
[23] Gormley, P. G., A generalization of Neumann’s formula for Qn(Z), J. London Math. Soc., 149-152 (1934) · Zbl 0009.11405 · doi:10.1112/jlms/s1-9.2.149
[24] T. S. Gutleb, J. A. Carrillo, and S. Olver, 1D power law equilibrium measure transition from single to two interval support, Figshare, 2020, DOI 10.6084/m9.figshare.13095821.v3.
[25] Gutleb, Timon S., A sparse spectral method for Volterra integral equations using orthogonal polynomials on the triangle, SIAM J. Numer. Anal., 1993-2018 (2020) · Zbl 1447.65171 · doi:10.1137/19M1267441
[26] M. F. Hagan and D. Chandler, Dynamic pathways for viral capsid assembly, Biophys. J., 91 (2006), 42-54, DOI 10.1529/biophysj.105.076851.
[27] Hager, William W., Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent, ACM Trans. Math. Software, 113-137 (2006) · Zbl 1346.90816 · doi:10.1145/1132973.1132979
[28] Hale, Nicholas, An ultraspherical spectral method for linear Fredholm and Volterra integro-differential equations of convolution type, IMA J. Numer. Anal., 1727-1746 (2019) · Zbl 1464.65204 · doi:10.1093/imanum/dry042
[29] Hale, Nicholas, A fast and spectrally convergent algorithm for rational-order fractional integral and differential equations, SIAM J. Sci. Comput., A2456-A2491 (2018) · Zbl 1397.65124 · doi:10.1137/16M1104901
[30] Holm, Darryl D., Formation of clumps and patches in self-aggregation of finite-size particles, Phys. D, 183-196 (2006) · Zbl 1125.82021 · doi:10.1016/j.physd.2006.07.010
[31] Huang, Yanghong, Explicit Barenblatt profiles for fractional porous medium equations, Bull. Lond. Math. Soc., 857-869 (2014) · Zbl 1297.35273 · doi:10.1112/blms/bdu045
[32] Kolokolnikov, Theodore, Emergent behaviour in multi-particle systems with non-local interactions [Editorial], Phys. D, 1-4 (2013) · doi:10.1016/j.physd.2013.06.011
[33] Lopes, Orlando, Uniqueness and radial symmetry of minimizers for a nonlocal variational problem, Commun. Pure Appl. Anal., 2265-2282 (2019) · Zbl 1481.49015 · doi:10.3934/cpaa.2019102
[34] Michel, N., Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the P\"{o}schl-Teller-Ginocchio potential wave functions, Comput. Phys. Comm., 535-551 (2008) · Zbl 1196.33020 · doi:10.1016/j.cpc.2007.11.007
[35] Milici, Constantin, Introduction to Fractional Differential Equations, Nonlinear Systems and Complexity, xii+188 pp. (2019), Springer, Cham · Zbl 1417.34004 · doi:10.1007/978-3-030-00895-6
[36] Miller, Kenneth S., An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, xvi+366 pp. (1993), John Wiley & Sons, Inc., New York · Zbl 0789.26002
[37] P. Mogensen and A. Riseth, Optim: a mathematical optimization package for Julia, J. Open Source Software 3 (2018), 615, DOI 10.21105/joss.00615.
[38] Nair, M. Thamban, Linear Operator Equations, xiv+249 pp. (2009), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ · Zbl 1208.47002 · doi:10.1142/9789812835659
[39] Neggal, Billel, Projected Tikhonov regularization method for Fredholm integral equations of the first kind, J. Inequal. Appl., Paper No. 195, 21 pp. (2016) · Zbl 1347.65198 · doi:10.1186/s13660-016-1137-6
[40] F. W. J. Olver, A. B. O. Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V. Saunders (eds.), NIST Digital Library of Mathematical Functions, Dec. 2018, dlmf.nist.gov.
[41] Olver, Sheehan, Computation of equilibrium measures, J. Approx. Theory, 1185-1207 (2011) · Zbl 1241.31004 · doi:10.1016/j.jat.2011.03.010
[42] S. Olver, JuliaApproximation/ApproxFun.jl v0.12.6, Aug. 2021, github.com/JuliaApproximation/ApproxFun.jl (accessed 2021-27-08), Software package.
[43] Olver, Sheehan, A fast and well-conditioned spectral method, SIAM Rev., 462-489 (2013) · Zbl 1273.65182 · doi:10.1137/120865458
[44] Olver, Sheehan, Fast algorithms using orthogonal polynomials, Acta Numer., 573-699 (2020) · Zbl 07674566 · doi:10.1017/S0962492920000045
[45] Animal Groups in Three Dimensions, xviii+378 pp. (1997), Cambridge University Press, Cambridge · Zbl 0883.20010 · doi:10.1017/CBO9780511601156
[46] Pearson, John W., Numerical methods for the computation of the confluent and Gauss hypergeometric functions, Numer. Algorithms, 821-866 (2017) · Zbl 1360.33009 · doi:10.1007/s11075-016-0173-0
[47] Phillips, David L., A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Mach., 84-97 (1962) · Zbl 0108.29902 · doi:10.1145/321105.321114
[48] Popov, G. Ia., Some properties of classical polynomials and their application to contact problems, J. Appl. Math. Mech., 1255-1271 (1963) · doi:10.1016/0021-8928(63)90066-2
[49] Saff, Edward B., Logarithmic Potentials With External Fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], xvi+505 pp. (1997), Springer-Verlag, Berlin · Zbl 0881.31001 · doi:10.1007/978-3-662-03329-6
[50] R. M. Slevinsky, Conquering the pre-computation in two-dimensional harmonic polynomial transforms, 1711.07866, 2017.
[51] Slevinsky, Richard Mika\"{e}l, Fast and backward stable transforms between spherical harmonic expansions and bivariate Fourier series, Appl. Comput. Harmon. Anal., 585-606 (2019) · Zbl 1495.33006 · doi:10.1016/j.acha.2017.11.001
[52] R. M. Slevinsky, FastTransforms v0.5.1, Mar. 2021, github.com/MikaelSlevinsky/FastTransforms (accessed 2019-01-11).
[53] R. M. Slevinsky and S. Olver, JuliaMath/HypergeometricFunctions.jl, July 2020, github.com/JuliaMath/HypergeometricFunctions.jl (accessed 2019-12-09).
[54] Tihonov, A. N., On the solution of ill-posed problems and the method of regularization, Dokl. Akad. Nauk SSSR, 501-504 (1963)
[55] A. N. Tikhonov, Regularization of incorrectly posed problems, Soviet Math. Dok. 4 no. 6, (1963), 1624-1627. · Zbl 0183.11601
[56] Topaz, Chad M., A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 1601-1623 (2006) · Zbl 1334.92468 · doi:10.1007/s11538-006-9088-6
[57] Townsend, Alex, The automatic solution of partial differential equations using a global spectral method, J. Comput. Phys., 106-123 (2015) · Zbl 1352.65579 · doi:10.1016/j.jcp.2015.06.031
[58] Townsend, Alex, Fast polynomial transforms based on Toeplitz and Hankel matrices, Math. Comp., 1913-1934 (2018) · Zbl 1478.65147 · doi:10.1090/mcom/3277
[59] Villani, C\'{e}dric, Topics in Optimal Transportation, Graduate Studies in Mathematics, xvi+370 pp. (2003), American Mathematical Society, Providence, RI · Zbl 1106.90001 · doi:10.1090/gsm/058
[60] von Brecht, James H., Predicting pattern formation in particle interactions, Math. Models Methods Appl. Sci., 1140002, 31 pp. (2012) · Zbl 1252.35056 · doi:10.1142/S0218202511400021
[61] Wolfram Research, Inc., The mathematical functions site, 2020, functions.wolfram.com (accessed 2020-01-19).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.