×

Non-polynomial spectral-Galerkin method for time-fractional diffusion equation on unbounded domain. (English) Zbl 1496.65175

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Milici, C.; Drăgănescu, G.; Machado, JT, Introduction to Fractional Differential Equations (2019), Berlin: Springer, Berlin · Zbl 1417.34004 · doi:10.1007/978-3-030-00895-6
[2] Biswas, K.; Bohannan, G.; Caponetto, R.; Lopes, AM; Machado, JAT, Fractional-Order Devices (2017), Berlin: Springer, Berlin · doi:10.1007/978-3-319-54460-1
[3] Behera, S.; Saha Ray, S., Euler wavelets method for solving fractional-order linear Volterra-Fredholm integro-differential equations with weakly singular kernels, Comput. Appl. Math., 40, 6, 1 (2021) · Zbl 1476.65335 · doi:10.1007/s40314-021-01565-9
[4] Kumar, S.; Saha Ray, S., Numerical treatment for Burgers-Fisher and generalized Burgers-Fisher equations, Math. Sci., 15, 1, 21 (2021) · Zbl 1473.65201 · doi:10.1007/s40096-020-00356-3
[5] Hosseini, VR; Shivanian, E.; Chen, W., Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping, J. Comput. Phys., 312, 307 (2016) · Zbl 1352.65348 · doi:10.1016/j.jcp.2016.02.030
[6] Prasad, RDR; Kumar, K., Caputo fractional order derivative model of zika virus transmission dynamics, J. Math. Comput. Sci, 28, 2, 145 (2023) · doi:10.22436/jmcs.028.02.03
[7] Hosseini, V.R., Koushki, M., Zou, W.N.: The meshless approach for solving 2D variable-order time-fractional advection-diffusion equation arising in anomalous transport. Eng. Comput. 1-19 (2021)
[8] Saha Ray, S.; Giri, S., New soliton solutions of the time fractional Drinfeld-Sokolov-Satsuma-Hirota system in dispersive water waves, Math. Methods Appl. Sci., 44, 18, 14217 (2021) · Zbl 1484.35130 · doi:10.1002/mma.7691
[9] Hosseini, V.R., Zou, W.: The peridynamic differential operator for solving time-fractional partial differential equations. Nonlinear Dyn. 1-28 (2022)
[10] Asjad, HuRDBMI; Ullah, N., Optical solitons for conformable space-time fractional nonlinear model, J. Math. Comput. Sci, 27, 1, 28 (2022) · doi:10.22436/jmcs.027.01.03
[11] Hosseini, V.R., Rezazadeh, A., Zheng, H., Zou, W.: A nonlocal modeling for solving time fractional diffusion equation arising in fluid mechanics, Fractals (2022) · Zbl 1497.65204
[12] Rakhshan, SA; Effati, S., The Laplace-collocation method for solving fractional differential equations and a class of fractional optimal control problems, Optim. Control Appl. Methods, 39, 2, 1110 (2018) · Zbl 1398.65193 · doi:10.1002/oca.2399
[13] Hosseini, VR; Yousefi, F.; Zou, WN, The numerical solution of high dimensional variable-order time fractional diffusion equation via the singular boundary method, J. Adv. Res., 32, 73 (2021) · doi:10.1016/j.jare.2020.12.015
[14] Sioofy Khoojine, A., Mahsuli, M., Shadabfar, M., Hosseini, V.R., Kordestani, H.: A proposed fractional dynamic system and monte Carlo-based back analysis for simulating the spreading profile of COVID-19. Eur. Phys. J. Special Topics 1-11 (2022)
[15] Firoozjaee, M.; Jafari, H.; Lia, A.; Baleanu, D., Numerical approach of Fokker-Planck equation with Caputo-Fabrizio fractional derivative using ritz approximation, J. Comput. Appl. Math., 339, 367 (2018) · Zbl 1393.65029 · doi:10.1016/j.cam.2017.05.022
[16] Ganji, RM; Jafari, H.; Baleanu, D., A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos, Solitons Fractals, 130, 109405 (2020) · Zbl 1489.65112 · doi:10.1016/j.chaos.2019.109405
[17] Tuan, N.; Ganji, R.; Jafari, H., A numerical study of fractional rheological models and fractional newell-whitehead-segel equation with non-local and non-singular kernel, Chin. J. Phys., 68, 308 (2020) · Zbl 07848602 · doi:10.1016/j.cjph.2020.08.019
[18] Sadeghi Roshan, S.; Jafari, H.; Baleanu, D., Solving fdes with Caputo-Fabrizio derivative by operational matrix based on genocchi polynomials, Math. Methods Appl. Sci., 41, 18, 9134 (2018) · Zbl 1406.34017 · doi:10.1002/mma.5098
[19] Nikan, O.; Avazzadeh, Z., An improved localized radial basis-pseudospectral method for solving fractional reaction-subdiffusion problem, Results Phys., 23, 104048 (2021) · doi:10.1016/j.rinp.2021.104048
[20] AlAhmad, AAR; AlAhmad, Q., Solution of fractional autonomous ordinary differential equations, J. Math. Comput. Sci, 27, 1, 59 (2022) · Zbl 1460.26006 · doi:10.22436/jmcs.027.01.05
[21] Nikan, O.; Avazzadeh, Z.; Machado, JT, A local stabilized approach for approximating the modified time-fractional diffusion problem arising in heat and mass transfer, J. Adv. Res., 32, 45 (2021) · doi:10.1016/j.jare.2021.03.002
[22] Akram, T.; Abbas, M.; Ali, A., A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation, J. Math. Comput. Sci., 22, 1, 85 (2021) · doi:10.22436/jmcs.012.01.08
[23] Alia, A.; Abbasb, M.; Akramc, T., New group iterative schemes for solving the two-dimensional anomalous fractional sub-diffusion equation, J. Math. Comput. Sci., 22, 2, 119 (2021) · doi:10.22436/jmcs.022.02.03
[24] Jassim, HK; Shareef, M., On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator, J. Math. Comput. Sci, 23, 58 (2021) · doi:10.22436/jmcs.023.01.06
[25] Salama, FM; Ali, NHM; Abd Hamid, NN, Fast \(\cal{O} (N)\) hybrid laplace transform-finite difference method in solving 2D time fractional diffusion equation, J. Math. Comput. Sci, 23, 110 (2021) · doi:10.22436/jmcs.023.02.04
[26] Othman Almatroud, A.; Ababneh, O.; Mossa Al-sawalha, M., Modify adaptive combined synchronization of fractional order chaotic systems with fully unknown parameters, J. Math. Comput. Sci, 21, 2, 99 (2020) · doi:10.22436/jmcs.021.02.01
[27] Nikan, O.; Avazzadeh, Z.; Machado, JT, Numerical study of the nonlinear anomalous reaction-subdiffusion process arising in the electroanalytical chemistry, J. Comput. Sci., 53, 101394 (2021) · doi:10.1016/j.jocs.2021.101394
[28] Nikan, O.; Molavi-Arabshai, SM; Jafari, H., Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves, Discr. Continu. Dyn. Syst.-S, 14, 10, 3685 (2021) · Zbl 1480.76164
[29] Can, NH; Nikan, O.; Rasoulizadeh, MN; Jafari, H.; Gasimov, YS, Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel, Therm. Sci., 24, Suppl. 1, 49 (2020) · doi:10.2298/TSCI20S1049C
[30] Farnam, B.; Esmaeelzade Aghdam, Y.; Nikan, O., Numerical investigation of the two-dimensional space-time fractional diffusion equation in porous media, Math. Sci., 15, 2, 153 (2021) · Zbl 1473.65233 · doi:10.1007/s40096-020-00364-3
[31] Mesgarani, H.; Rashidinia, J.; Aghdam, YE; Nikan, O., Numerical treatment of the space fractional advection-dispersion model arising in groundwater hydrology, Comput. Appl. Math., 40, 1, 1 (2021) · Zbl 1461.65248 · doi:10.1007/s40314-020-01410-5
[32] Nikan, O.; Machado, JT; Avazzadeh, Z.; Jafari, H., Numerical evaluation of fractional Tricomi-type model arising from physical problems of gas dynamics, J. Adv. Res., 25, 205 (2020) · doi:10.1016/j.jare.2020.06.018
[33] Nikan, O.; Avazzadeh, Z.; Machado, JT, Numerical investigation of fractional nonlinear sine-Gordon and Klein-Gordon models arising in relativistic quantum mechanics, Eng. Anal. Boundary Elem., 120, 223 (2020) · Zbl 1464.65151 · doi:10.1016/j.enganabound.2020.08.017
[34] Nikan, O.; Avazzadeh, Z.; Machado, JT, Numerical approach for modeling fractional heat conduction in porous medium with the generalized Cattaneo model, Appl. Math. Model., 100, 107 (2021) · Zbl 1481.65150 · doi:10.1016/j.apm.2021.07.025
[35] Nikan, O.; Avazzadeh, Z., Numerical simulation of fractional evolution model arising in viscoelastic mechanics, Appl. Numer. Math., 169, 303 (2021) · Zbl 1486.65206 · doi:10.1016/j.apnum.2021.07.008
[36] Nikan, O., Avazzadeh, Z., Machado, J.A.: Tenreiro: an efficient local meshless approach for solving nonlinear time-fractional fourth-order diffusion model. J. King Saud Univ. Sci. 33(1), 101243 (2021)
[37] Avazzadeh Z, Nikan O, Tenreiro Machado J, Rasoulizadeh MN.: Numerical analysis of time-fractional Sobolev equation for fluid-driven processes in impermeable rocks. Adv. Contin. Discret. Model. 2022(1), 48 (2022) · Zbl 1535.65123
[38] Guo T, Nikan O, Avazzadeh Z, Qiu W.: Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro differential problems. Comput. Appl. Math. 41(6), 1-27 (2022) · Zbl 1513.35401
[39] Çelik, C.; Duman, M., Crank-nicolson method for the fractional diffusion equation with the riesz fractional derivative, J. Comput. Phys., 231, 4, 1743 (2012) · Zbl 1242.65157 · doi:10.1016/j.jcp.2011.11.008
[40] Deng, W., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47, 1, 204 (2009) · Zbl 1416.65344 · doi:10.1137/080714130
[41] Shen, J.; Tang, T.; Wang, LL, Spectral Methods: Algorithms, Analysis and Applications (2011), Berlin: Springer, Berlin · Zbl 1227.65117 · doi:10.1007/978-3-540-71041-7
[42] Li, X.; Xu, C., Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8, 5, 1016 (2010) · Zbl 1364.35424 · doi:10.4208/cicp.020709.221209a
[43] Zayernouri, M.; Karniadakis, GE, Fractional Sturm-Liouville eigen-problems: theory and numerical approximation, J. Comput. Phys., 252, 495 (2013) · Zbl 1349.34095 · doi:10.1016/j.jcp.2013.06.031
[44] Khosravian-Arab, H.; Dehghan, M.; Eslahchi, M., Fractional Sturm-Liouville boundary value problems in unbounded domains: Theory and applications, J. Comput. Phys., 299, 526 (2015) · Zbl 1352.65202 · doi:10.1016/j.jcp.2015.06.030
[45] Khosravian-Arab, H.; Dehghan, M.; Eslahchi, M., Fractional spectral and pseudo-spectral methods in unbounded domains: Theory and applications, J. Comput. Phys., 338, 527 (2017) · Zbl 1415.65177 · doi:10.1016/j.jcp.2017.02.060
[46] Mainardi, F., Fractional diffusive waves in viscoelastic solids, Nonlinear Waves in Solids, 137, 93 (1995)
[47] Scher, H.; Montroll, EW, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B, 12, 6, 2455 (1975) · doi:10.1103/PhysRevB.12.2455
[48] Li, X.; Xu, C., A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47, 3, 2108 (2009) · Zbl 1193.35243 · doi:10.1137/080718942
[49] Chen, H.; Lü, S.; Chen, W., Spectral methods for the time fractional diffusion-wave equation in a semi-infinite channel, Comput. Math. Appl., 71, 9, 1818 (2016) · Zbl 1443.65239 · doi:10.1016/j.camwa.2016.02.024
[50] Lischke, A.; Zayernouri, M.; Karniadakis, GE, A Petrov-Galerkin spectral method of linear complexity for fractional multiterm ODEs on the half line, SIAM J. Sci. Comput., 39, 3, A922 (2017) · Zbl 1367.65108 · doi:10.1137/17M1113060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.