×

Compressible Navier-Stokes system with the hard sphere pressure law in an exterior domain. (English) Zbl 1496.35323

Summary: We consider the motion of compressible Navier-Stokes fluids with the hard sphere pressure law around a rigid obstacle when the velocity and the density at infinity are nonzero. This kind of pressure model is largely employed in various physical and industrial applications. We prove the existence of weak solution to the system in the exterior domain.

MSC:

35Q35 PDEs in connection with fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35D30 Weak solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Berthelin, F.; Degond, P.; Delitala, M.; Rascle, M., A model for the formation and evolution of traffic jams, Arch. Ration. Mech. Anal., 187, 185-220 (2008) · Zbl 1153.90003 · doi:10.1007/s00205-007-0061-9
[2] Berthelin, F.; Degond, P.; LeBlanc, V.; Moutari, S.; Rascle, M.; Royer, J., A traffic-flow model with constraints for the modeling of traffic jams, Math. Models Methods Appl. Sci., 18, 1269-1298 (2008) · Zbl 1197.35159 · doi:10.1142/S0218202508003030
[3] Bresch, D.; Nečasová, Š.; Perrin, C., Compression effects in heterogeneous media, J. Éc. Polytech. Math., 6, 433-467 (2019) · Zbl 1427.35199 · doi:10.5802/jep.98
[4] Bresch, D.; Perrin, C.; Zatorska, E., Singular limit of a Navier-Stokes system leading to a free/congested zones two-phase model, C. R. Math., 352, 685-690 (2014) · Zbl 1302.35293 · doi:10.1016/j.crma.2014.06.009
[5] Bresch, D.; Renardy, M., Development of congestion in compressible flow with singular pressure, Asymptot. Anal., 103, 95-101 (2017) · Zbl 1378.35231
[6] Carnahan, N.; Starling, K., Equation of state for nonattracting rigid spheres, J. Chem. Phys., 51, 635-636 (1969) · doi:10.1063/1.1672048
[7] Choe, HJ; Novotný, A.; Yang, M., Compressible Navier-Stokes system with hard sphere pressure law and general inflow-outflow boundary conditions, J. Differ. Equ., 266, 3066-3099 (2019) · Zbl 1414.35146 · doi:10.1016/j.jde.2018.08.049
[8] Degond, J.; Hua, P., Self-organized hydrodynamics with congestion and path formation in crowds, J. Comput. Phys., 237, 299-319 (2013) · Zbl 1286.93026 · doi:10.1016/j.jcp.2012.11.033
[9] Degond, P.; Hua, J.; Navoret, L., Numerical simulations of the Euler system with congestion constraint, J. Comput. Phys., 230, 8057-8088 (2011) · Zbl 1408.76379 · doi:10.1016/j.jcp.2011.07.010
[10] DiPerna, R.; Lions, P., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, 511-548 (1989) · Zbl 0696.34049 · doi:10.1007/BF01393835
[11] Feireisl, E.; Lu, Y.; Novotný, A., Weak-strong uniqueness for the compressible Navier-Stokes equations with a hard-sphere pressure law, Sci. China Math., 61, 2003-2016 (2018) · Zbl 1402.35222 · doi:10.1007/s11425-017-9272-7
[12] Feireisl, E.; Novotný, A.; Petzeltová, H., On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3, 358-392 (2001) · Zbl 0997.35043 · doi:10.1007/PL00000976
[13] Feireisl, E.; Zhang, P., Quasi-neutral limit for a model of viscous plasma, Arch. Ration. Mech. Anal., 197, 271-295 (2010) · Zbl 1198.35194 · doi:10.1007/s00205-010-0317-7
[14] Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, vol.38 of Springer Tracts in Natural Philosophy. Springer, New York (1994). Linearized steady problems · Zbl 0949.35004
[15] Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer Monographs in Mathematics, 2nd edn. Springer, New York (2011). Steady-state problems · Zbl 1245.35002
[16] Geissert, M., Heck, H., Hieber, M.: On the equation \({\rm div}\,u=g\) and Bogovskiĭ’s operator in Sobolev spaces of negative order. Partial Differ. Equ. Funct. Anal. Oper. Theory Adv. Appl. 168, 113-121 (2006) · Zbl 1218.35073
[17] Kastler, A., Vichnievsky, R., Bruhat, G.: Cours de physique générale à l’usage de l’enseignement supérieur scientifique et technique. Thermodynamique, Masson et Cie (1962)
[18] Kolafa, J.; Labik, S.; Malijevsky, A., Accurate equation of state of the hard sphere fluid in stable and mestable regions, Phys. Chem. Chem. Phys., 6, 2335-2340 (2004) · doi:10.1039/B402792B
[19] Kračmar, S., Nečasová, Š., Novotný, A.: The motion of a compressible viscous fluid around rotating body. Ann. Univ. Ferrara Sez. Sci. Mat. 60, 189-208 (2014) · Zbl 1302.35296
[20] Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 2, vol.10 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York (1998). Compressible models, Oxford Science Publications · Zbl 0908.76004
[21] Liu, H.: Carnahan-Starling type equations of state for stable hard disk and hard sphere fluids. Mol. Phys. 119 (2021)
[22] Maury, B.: Prise en compte de la congestion dans les modeles de mouvements de foules, Actes des colloques Caen (2012) · Zbl 1309.35048
[23] Novo, S., Compressible Navier-Stokes model with inflow-outflow boundary conditions, J. Math. Fluid Mech., 7, 485-514 (2005) · Zbl 1090.35139 · doi:10.1007/s00021-005-0178-2
[24] Novotný, A.; Straškraba, I., Introduction to the Mathematical Theory of Compressible flow (2004), Oxford: Oxford University Press, Oxford · Zbl 1088.35051
[25] Perrin, C.; Zatorska, E., Free/congested two-phase model from weak solutions to multi-dimensional compressible Navier-Stokes equations, Commun. Partial Differ. Equ., 40, 1558-1589 (2015) · Zbl 1331.35265 · doi:10.1080/03605302.2015.1014560
[26] Song, Y.; Mason, EA; Stratt, RM, Why does the Carnahan-Starling equation work so well?, J. Phys. Chem., 93, 6916-6919 (1989) · doi:10.1021/j100356a008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.