×

Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations. (English) Zbl 1494.34034


MSC:

34A08 Fractional ordinary differential equations
45J05 Integro-ordinary differential equations
26A33 Fractional derivatives and integrals
44A45 Classical operational calculus

References:

[1] Podlubny, I., Fractional Differential Equations (1970), New Haven: Academic Press, New Haven · Zbl 0918.34010
[2] Karapinar, E.; Binh, H. D.; Luc, N. H.; Can, N. H., On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems, Adv. Differ. Equ., 2021 (2021) · Zbl 1487.35407 · doi:10.1186/s13662-021-03232-z
[3] Ganji, R. M.; Jafari, H.; Kgarose, M.; Mohammadi, A., Numerical solutions of time-fractional Klein-Gordon equations by clique polynomials, Alex. Eng. J., 60, 4563-4571 (2021) · doi:10.1016/j.aej.2021.03.026
[4] Adiguzel, R. S.; Aksoy, U.; Karapinar, E.; Erhan, I. M., On the solution of a boundary value problem associated with a fractional differential equation, Math. Methods Appl. Sci. (2020) · Zbl 1490.34012 · doi:10.1002/mma.6652
[5] Afshari, H.; Karapinar, E., A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces, Adv. Differ. Equ., 2020 (2020) · Zbl 1486.34009 · doi:10.1186/s13662-020-03076-z
[6] Jafari, H.; Ganji, R. M.; Nkomo, N. S.; Lv, Y. P., A numerical study of fractional order population dynamics model, Results Phys., 27 (2021) · doi:10.1016/j.rinp.2021.104456
[7] Afshari, H.; Kalantari, S.; Karapinar, E., Solution of fractional differential equations via coupled fixed point, Electron. J. Differ. Equ., 2015 (2015) · Zbl 1351.34110 · doi:10.1186/s13662-015-0634-0
[8] Alqahtani, B.; Aydi, H.; Karapinar, E.; Rakocevic, V., A solution for Volterra fractional integral equations by hybrid contractions, Mathematics, 7 (2019) · doi:10.3390/math7080694
[9] Karapinar, E.; Fulga, A.; Rashid, M.; Shahid, L.; Aydi, H., Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations, Mathematics, 7 (2019) · doi:10.3390/math7050444
[10] Adiguzel, R. S.; Aksoy, U.; Karapinar, E.; Erhan, I. M., Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 115, 1-16 (2021) · Zbl 1448.91315 · doi:10.1007/s13398-020-00944-x
[11] Adiguzel, R. S.; Aksoy, U.; Karapinar, E.; Erhan, I. M., On the solutions of fractional differential equations via Geraghty type hybrid contractions, Comput. Math. Appl., 20, 313-333 (2021) · Zbl 1541.34006
[12] Ardjouni, A., Asymptotic stability in Caputo-Hadamard fractional dynamic equations, Results Nonlinear Anal., 4, 77-86 (2021) · doi:10.53006/rna.865900
[13] Ray, S. S., The formation of dynamic variable order fractional differential equation, Int. J. Mod. Phys. C, 27 (2016) · doi:10.1142/S0129183116500741
[14] Khan, M. A.; Atangana, A., Modeling the dynamics of novel coronavirus (2019-nCoV) with fractional derivative, Alex. Eng. J., 59, 2379-2389 (2020) · doi:10.1016/j.aej.2020.02.033
[15] Ganji, R. M.; Jafari, H.; Nkomo, N. S.; Moshokoa, S. P., A mathematical model and numerical solution for brain tumor derived using fractional operator, Results Phys., 28 (2021) · doi:10.1016/j.rinp.2021.104671
[16] Samko, S. G.; Ross, B., Integration and differentiation to a variable fractional order, Integral Transforms Spec. Funct., 1, 277-300 (1993) · Zbl 0820.26003 · doi:10.1080/10652469308819027
[17] Lorenzo, C. F.; Hartley, T. T., Variable order and distributed order fractional operators, Nonlinear Dyn., 29, 57-98 (2002) · Zbl 1018.93007 · doi:10.1023/A:1016586905654
[18] Doha, E. H.; Abdelkawy, M. A.; Amin, A. Z.M.; Baleanu, D., Spectral technique for solving variable-order fractional Volterra integro-differential equations, Numer. Methods Partial Differ. Equ., 34, 1659-1677 (2018) · Zbl 1407.65211 · doi:10.1002/num.22233
[19] Luc, N. H.; Baleanu, D.; Long, L. D.; Can, N. H., Reconstructing the right-hand side of a fractional subdiffusion equation from the final data, J. Inequal. Appl., 2020 (2020) · Zbl 1503.35289 · doi:10.1186/s13660-020-02319-7
[20] Soon, C. M.; Coimbra, C. F.M.; Kobayashi, M. H., The variable viscoelasticity oscillator, Ann. Phys., 14, 378-389 (2005) · Zbl 1125.74316 · doi:10.1002/andp.200410140
[21] Yang, X. J., Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems, Therm. Sci., 21, 1161-1171 (2017) · doi:10.2298/TSCI161216326Y
[22] Neto, J. P.; Coelho, R. M.; Valerio, D.; Vinga, S.; Sierociuk, D.; Malesza, W.; Macias, M.; Dzielinski, A., Simplifying biochemical tumorous bone remodeling models through variable order derivatives, Comput. Math. Appl., 75, 3147-3157 (2018) · Zbl 1409.92088 · doi:10.1016/j.camwa.2018.01.037
[23] Moghaddam, B. P.; Tenreiro Machado, J. A., Time analysis of forced variable-order fractional van der Pol oscillator, Eur. Phys. J. Spec. Top., 226, 3803-3810 (2017) · doi:10.1140/epjst/e2018-00019-7
[24] Ingman, D.; Suzdalnitsky, J., Control of damping oscillations by fractional differential operator with time-dependent order, Comput. Methods Appl. Mech. Eng., 193, 5585-5595 (2018) · Zbl 1079.70020 · doi:10.1016/j.cma.2004.06.029
[25] Ramirez, L. E.S.; Coimbra, C. F.M., A variable order constitutive relation for viscoelasticity, Ann. Phys., 16, 543-552 (2007) · Zbl 1159.74008 · doi:10.1002/andp.200710246
[26] Hamoud, A.; Mohammed, N. M.; Ghadle, K., Existence and uniqueness results for Volterra-Fredholm integro-differential equations, Adv. Theory Nonlinear Anal. Appl., 4, 361-372 (2020)
[27] Ganji, R. M.; Jafari, H.; Adem, A. R., A numerical scheme to solve variable order diffusion-wave equations, Therm. Sci., 23, 2063-2071 (2019) · doi:10.2298/TSCI190729371M
[28] Ganji, R. M.; Jafari, H.; Baleanu, D., A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Solitons Fractals, 130 (2020) · Zbl 1489.65112 · doi:10.1016/j.chaos.2019.109405
[29] Ray, S. S., A novel wavelets operational matrix method for the time variable-order fractional mobile-immobile advection-dispersion model, Eng. Comput. (2021) · doi:10.1007/s00366-021-01405-8
[30] Ray, S. S., A new approach by two-dimensional wavelets operational matrix method for solving variable-order fractional partial integro-differential equations, Numer. Methods Partial Differ. Equ., 37, 341-359 (2021) · Zbl 1535.65295 · doi:10.1002/num.22530
[31] Tuan, N. H.; Ganji, R. M.; Jafari, H., A numerical study of fractional rheological models and fractional Newell-Whitehead-Segel equation with non-local and non-singular kernel, Chin. J. Phys., 68, 308-320 (2020) · Zbl 07848602 · doi:10.1016/j.cjph.2020.08.019
[32] Jafari, H.; Tuan, N. H.; Ganji, R. M., A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations, J. King Saud Univ., Sci., 33 (2021) · doi:10.1016/j.jksus.2020.08.029
[33] Jafari, H.; Ganji, R. M.; Sayevand, K.; Baleanu, D., A numerical approach for solving fractional optimal control problems with Mittag-Leffler kernel, J. Vib. Control (2021) · doi:10.1177/10775463211016967
[34] Almeida, R.; Tavares, D.; Torres, D. F.M., The Variable-Order Fractional Calculus of Variations (2019), Cham: Springer, Cham · Zbl 1402.49002 · doi:10.1007/978-3-319-94006-9
[35] Abd-Elhameed, W. M.; Youssri, Y. H., Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations, Comput. Appl. Math., 37, 2897-2921 (2017) · Zbl 1404.65074 · doi:10.1007/s40314-017-0488-z
[36] Jafari, H.; Tajadodi, H.; Ganji, R. M., A numerical approach for solving variable order differential equations based on Bernstein polynomials, Comput. Math. Methods, 1, 1-11 (2019) · doi:10.1002/cmm4.1055
[37] Yi, M.; Huang, J.; Wang, L., Operational matrix method for solving variable order fractional integro-differential equations, Comput. Model. Eng. Sci., 96, 361-377 (2013) · Zbl 1356.65205
[38] Cao, J. X.; Qiu, Y. N., A high order numerical scheme for variable order fractional ordinary differential equation, Appl. Math. Lett., 61, 88-94 (2016) · Zbl 1347.65119 · doi:10.1016/j.aml.2016.05.012
[39] Li, X.; Li, H.; Wu, B., A new numerical method for variable order fractional functional differential equations, Appl. Math. Lett., 68, 80-86 (2017) · Zbl 1361.65044 · doi:10.1016/j.aml.2017.01.001
[40] Shen, S.; Liu, F.; Chen, J.; Turner, I.; Anh, V., Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218, 10861-10870 (2012) · Zbl 1280.65089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.