×

Zeros of partial sums of \(L\)-functions. (English) Zbl 1494.11077

Summary: We consider a certain class of multiplicative functions \(f : \mathbb{N} \rightarrow \mathbb{C}\). Let \(F(s) = \sum_{n = 1}^\infty f(n) n^{- s}\) be the associated Dirichlet series and \(F_N(s) = \sum_{n \leq N} f(n) n^{- s}\) be the truncated Dirichlet series. In this setting, we obtain new Halász-type results for the logarithmic mean value of \(f\). More precisely, we prove estimates for the sum \(\sum_{n = 1}^x f(n) / n\) in terms of the size of \(| F(1 + 1 / \log x) |\) and show that these estimates are sharp. As a consequence of our mean value estimates, we establish non-trivial zero-free regions for the partial sums \(F_N(s)\).
In particular, we study the zero distribution of partial sums of the Dedekind zeta function of a number field \(K\). More precisely, we give some improved results for the number of zeros up to height \(T\) as well as new zero density results for the number of zeros up to height \(T\), lying to the right of \(\operatorname{Re}(s) = \sigma\), where \(\sigma \geq 1 / 2\).

MSC:

11M41 Other Dirichlet series and zeta functions
11N37 Asymptotic results on arithmetic functions
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses
11N64 Other results on the distribution of values or the characterization of arithmetic functions

References:

[1] Balanzario, E. P., On Dirichlet polynomial approximations to the Riemann zeta function, (XXXII National Congress of the Mexican Mathematical Society. XXXII National Congress of the Mexican Mathematical Society, Guadalajara, 1999. XXXII National Congress of the Mexican Mathematical Society. XXXII National Congress of the Mexican Mathematical Society, Guadalajara, 1999, Aportaciones Mat. Comun., vol. 27 (2000), Soc. Mat. Mexicana: Soc. Mat. Mexicana México), 3-8 · Zbl 1234.11107
[2] Bombieri, E., Remarks on the analytic complexity of zeta functions, (Analytic Number Theory. Analytic Number Theory, Kyoto, 1996. Analytic Number Theory. Analytic Number Theory, Kyoto, 1996, London Math. Soc. Lecture Note Ser., vol. 247 (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 21-30 · Zbl 1030.11041
[3] Bombieri, E.; Friedlander, J. B., Dirichlet polynomial approximations to zeta functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 22, 3, 517-544 (1995) · Zbl 0837.11051
[4] Borwein, P.; Fee, G.; Ferguson, R.; van der Waall, A., Zeros of partial sums of the Riemann zeta function, Exp. Math., 16, 1, 21-40 (2007) · Zbl 1219.11126
[5] Burgeĭn, Zh.; Kashin, B. S., Uniform approximation of a partial sum by a shorter sum and Φ-widths, Mat. Sb., 203, 12, 57-80 (2012) · Zbl 1282.30003
[6] Cojocaru, A. C.; Murty, M. R., An Introduction to Sieve Methods and Their Applications, London Mathematical Society Student Texts, vol. 66 (2006), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1121.11063
[7] Drappeau, S.; Granville, A.; Shao, X., Smooth-supported multiplicative functions in arithmetic progressions beyond the \(x^{1 / 2}\)-barrier, preprint · Zbl 1428.11174
[8] Elliott, P. D.T. A., Probabilistic Number Theory: Central Limit Theorems, Grundlehren der Math. Wiss., vol. 240 (1980), Springer-Verlag: Springer-Verlag New York, Berlin, Heidelberg · Zbl 0431.10030
[9] Goldmakher, L., Multiplicative mimicry and improvements to the Pólya-Vinogradov inequality, Algebra Number Theory, 6, 1, 123-163 (2012) · Zbl 1263.11076
[10] Gonek, S. M.; Ledoan, A. H., Zeros of partial sums of the Riemann zeta-function, Int. Math. Res. Not., 10, 1775-1791 (2010) · Zbl 1198.11075
[11] Granville, A., What is the best approach to counting primes?, (A Century of Advancing Mathematics (2015), Math. Assoc. America: Math. Assoc. America Washington, DC), 83-116 · Zbl 1541.11003
[12] Granville, A.; Harper, A.; Soundararajan, K., A more intuitive proof of a sharp version of Halász’s theorem, Proc. Amer. Math. Soc., 146, 10, 4099-4104 (2018) · Zbl 1456.11182
[13] Granville, A.; Harper, A.; Soundararajan, K., A new proof of Halász’s theorem, and its consequences, Compos. Math., 155, 1, 126-163 (2019) · Zbl 1443.11200
[14] Granville, A.; Shao, X., Bombieri-Vinogradov for multiplicative functions, and beyond the \(x^{1 / 2}\)-barrier, preprint · Zbl 1473.11185
[15] Granville, A.; Shao, X., When does the Bombieri-Vinogradov Theorem hold for a given multiplicative function?, preprint · Zbl 1451.11105
[16] Granville, A.; Soundararajan, K., Large character sums: pretentious characters and the Pólya-Vinogradov theorem, J. Amer. Math. Soc., 20, 2, 357-384 (2007) · Zbl 1210.11090
[17] Halász, G., Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Acad. Sci. Hung., 19, 365-403 (1968) · Zbl 0165.05804
[18] Halász, G., On the distribution of additive and the mean values of multiplicative arithmetic functions, Studia Sci. Math. Hungar., 6, 211-233 (1971) · Zbl 0226.10046
[19] Hardy, G. H.; Littlewood, J. E., The approximate functional equation for \(\zeta(s)\) and \(\zeta^2(s)\), Proc. Lond. Math. Soc. (2), 29, 81-97 (1929) · JFM 55.0203.05
[20] Hiary, A., A nearly-optimal method to compute the truncated theta function, its derivatives, and integrals, Ann. of Math. (2), 174, 2, 859-889 (2011) · Zbl 1243.11117
[21] Hiary, G. A., Fast methods to compute the Riemann zeta function, Ann. of Math. (2), 174, 2, 891-946 (2011) · Zbl 1243.11118
[22] Hiary, G. A., Computing Dirichlet character sums to a power-full modulus, J. Number Theory, 140, 122-146 (2014) · Zbl 1320.11079
[23] Iwaniec, H.; Kowalski, E., Analytic Number Theory, American Mathematical Society Colloquium Publications, vol. 53 (2004), American Mathematical Society: American Mathematical Society Providence, RI, xii+615 pp · Zbl 1059.11001
[24] Lamzouri, Y.; Mangerel, A. P., Large odd order character sums and improvements of the Pólya-Vinogradov inequality, preprint · Zbl 1508.11084
[25] Landau, E., Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale (1949), Chelsea Publishing Company: Chelsea Publishing Company New York, NY · JFM 46.0242.02
[26] Langer, R. E., On the zeros of exponential sums and integral, Bull. Amer. Math. Soc., 37, 213-239 (1931) · Zbl 0001.34403
[27] Ledoan, A.; Roy, A.; Zaharescu, A., Zeros of partial sums of the Dedekind zeta function of a cyclotomic field, J. Number Theory, 136, 118-133 (2014) · Zbl 1294.11151
[28] Mine, M., On the value-distributions of logarithmic derivatives of Dedekind zeta functions, preprint
[29] Monach, W. R., Numerical Investigation of Several Problems in Number Theory (1980), University of Michigan, PhD Thesis
[30] Montgomery, H. L., A Note on Mean Values of Multiplicative Functions (1978), Institut Mittag-Leffler Report No. 17
[31] Montgomery, H. L., Zeros of Approximations to the Zeta Function, Studies in Pure Mathematics, 497-506 (1983), Birkhäuser: Birkhäuser Basel · Zbl 0518.10046
[32] Montgomery, H. L.; Vaughan, R. C., The large sieve, Mathematika, 20, 119-134 (1973) · Zbl 0296.10023
[33] Montgomery, H. L.; Vaughan, R. C., Hilbert’s inequality, J. Lond. Math. Soc. (2), 8, 73-82 (1974) · Zbl 0281.10021
[34] Montgomery, H. L.; Vaughan, R. C., Mean values of multiplicative functions, Period. Math. Hungar., 43, 199-214 (2001) · Zbl 0980.11043
[35] Montgomery, H. L.; Vaughan, R. C., Multiplicative Number Theory. I. Classical Theory, Cambridge Studies in Advanced Mathematics, vol. 97 (2007), Cambridge University Press: Cambridge University Press Cambridge, xviii+552 pp · Zbl 1142.11001
[36] Murty, M. R., Sieving using Dirichlet series, (Current Trends in Number Theory. Current Trends in Number Theory, Allahabad, 2000 (2002), Hindustan Book Agency: Hindustan Book Agency New Delhi), 111-124 · Zbl 1039.11060
[37] Murty, M. R.; Esmonde, J., Problems in Algebraic Number Theory, Graduate Texts in Mathematics, vol. 190 (2005), Springer-Verlag: Springer-Verlag New York, xvi+352 pp · Zbl 1055.11001
[38] Platt, D. J.; Trudgian, T. S., Zeroes of partial sums of the zeta-function, LMS J. Comput. Math., 19, 1, 37-41 (2016) · Zbl 1397.11133
[39] Pólya, G.; Szegö, G., Problems and theorems in analysis, (Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry, vol. II. Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry, vol. II, Classics Math. (1998), Springer-Verlag: Springer-Verlag Berlin), translated from German by C.E. Billigheimer, reprint of the 1976 English translation · Zbl 0338.00001
[40] Raikov, D. A., Generalisation of a theorem of Ikehara-Landau, Mat. Sb., 45, 559-568 (1938), (in Russian) · Zbl 0019.24902
[41] A. Roy, A. Vatwani, Zeros of Dirichlet polynomials, preprint.; A. Roy, A. Vatwani, Zeros of Dirichlet polynomials, preprint. · Zbl 1469.11362
[42] Shiu, P., A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., 313, 161-170 (1980) · Zbl 0412.10030
[43] Spira, R., Zeros of sections of the zeta function. I, Math. Comp., 20, 542-550 (1966) · Zbl 0176.13903
[44] Spira, R., Zeros of sections of the zeta function. II, Math. Comp., 22, 163-173 (1968) · Zbl 0176.13904
[45] Tamarkin, J. D., Math. Z., 27, 24 (1927)
[46] Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory, Graduate Studies in Mathematics, vol. 163 (2015), American Mathematical Society: American Mathematical Society Providence, RI, Translated from the 2008 French edition by Patrick D.F. Ion · Zbl 0788.11001
[47] Tenenbaum, G., Moyennes effectives de fonctions multiplicatives complexes, Ramanujan J., 44, 3, 641-701 (2017), (in French) · Zbl 1426.11113
[48] Titchmarsh, E. C., The Theory of the Riemann Zeta-function (1986), Oxford University Press: Oxford University Press New York, x+412 pp. Edited and with a preface by D.R. Heath-Brown · Zbl 0601.10026
[49] Turán, P., On some approximative Dirichlet-polynomials in the theory of the zeta-function of Riemann, Danske Vid. Selsk. Mat.-Fys. Medd., 24, 17 (1948), 36 pp · Zbl 0031.30204
[50] Turán, P., Nachtrag zu meiner Abhandlung “On some approximative Dirichlet polynomials in the theory of zeta-function of Riemann”, Acta Math. Acad. Sci. Hung., 10, 277-298 (1959) · Zbl 0103.04503
[51] Turán, P., A theorem on diophantine approximation with application to Riemann zeta-function, Acta Sci. Math. (Szeged), 21, 311-318 (1960) · Zbl 0099.03902
[52] van de Lune, J.; te Riele, H. J.J., Numerical computation of special zeros of partial sums of Riemann’s zeta function, (Computational Methods in Number Theory, Part II. Computational Methods in Number Theory, Part II, Mathematical Centre Tracts, vol. 155 (2010), Mathematisch Centrum: Mathematisch Centrum Amsterdam), 371-387 · Zbl 0512.10032
[53] Wilder, C. E., Expansion problems of ordinary linear differential equations with auxiliary conditions at more than two points, Trans. Amer. Math. Soc., 18, 415-442 (1917) · JFM 46.0697.02
[54] Wintner, A., On the prime number theorem, Amer. J. Math., 64, 320-326 (1942) · Zbl 0060.10602
[55] Wirsing, E., Das asymptotische Verhalten von Summen über multiplikative Funktionen II, Acta Math. Acad. Sci. Hung., 18, 414-467 (1967) · Zbl 0165.05901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.