×

Optimal stochastic Bernstein polynomials in Ditzian-Totik type modulus of smoothness. (English) Zbl 1492.60206

Summary: We introduce a family of symmetric stochastic Bernstein polynomials based on order statistics, and establish the order of convergence in probability in terms of the second order Ditzian-Totik type modulus of smoothness on the interval \([ 0 , 1 ]\), which epitomizes an optimal pointwise error estimate for the classical Bernstein polynomial approximation. Monte Carlo simulation results (presented at the end of the article) show that this new approximation scheme is efficient and robust.

MSC:

60H30 Applications of stochastic analysis (to PDEs, etc.)
41A25 Rate of convergence, degree of approximation
41A63 Multidimensional problems
42B08 Summability in several variables
Full Text: DOI

References:

[1] Wu, Z.; Sun, X.; Ma, L., Sampling scattered data with Bernstein polynomials: stochastic and deterministic error estimates, Adv. Comput. Math., 38, 187-205 (2013) · Zbl 1268.41004
[2] Adell, J. A.; Sangüesa, C., Upper estimates in direct inequalities for Bernstein-type operators, J. Approx. Theory, 109, 229-241 (2001) · Zbl 0974.41016
[3] Cheney, E. W., Introduction to Approximation Theory (1982), Chelsea: Chelsea New York · Zbl 0535.41001
[4] DeVore, R. A.; Lorentz, G. G., Constructive approximation, (Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 303 (1993), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0797.41016
[5] Ditzian, Z.; Totik, V., Moduli of Smoothness (1987), Springer: Springer New York · Zbl 0666.41001
[6] Lorentz, G. G., Approximation of Functions. Athena Series (1966), Holt, Rinehart and Winston: Holt, Rinehart and Winston New York · Zbl 0153.38901
[7] Sikkema, P. C., Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen, Numer. Math., 3, 107-116 (1961), (in German) · Zbl 0099.04701
[8] Sikkema, P. C., uber den Grad der Approximation mit Bernstein-Polynomen, Numer. Math., 1, 221-239 (1959), (in German) · Zbl 0089.27503
[9] Totik, V., Approximation by Bernstein polynomials, Amer. J. Math., 116, 995-1018 (1994) · Zbl 0812.41018
[10] Gavrea, I.; Gonska, H.; Pǎltǎnea, R.; Tachev, G., General estimates for the Ditzian-Totik modulus, East J. Approx., 9, 175-194 (2003) · Zbl 1111.41004
[11] Pǎltǎnea, R., Approximation Theory using Positive Linear Operators (2004), Birkhäuser · Zbl 1154.41013
[12] Hardin, D. P.; Saff, E. B., Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc., 51, 1186-1194 (2004) · Zbl 1095.49031
[13] Lorentz, G. G., Inequalities and the saturation classes of Bernstein polynomials, (J., Butzer P. L. Korevaar, On Approximation Theory/Über Approximations theorie. On Approximation Theory/Über Approximations theorie, ISNM International Series of Numerical Mathematics/Internationale Schriftenreihe zur Nummerischen Mathematik/Série Internationale D’Analyse Numérique, vol. 5 (1964), Springer: Springer Basel) · Zbl 0137.04301
[14] Wu, Z., Simulations of scattered data: Models, (Methods and Theories (2007), Scientific Press), (in Chinese)
[15] David, H. A.; Nagaraja, H. N., (Order Statistics. Order Statistics, Wiley Series in Probability and Statistics (2003), John Wiley & Sons: John Wiley & Sons Hoboken, New Jersey) · Zbl 1053.62060
[16] Sun, X.; Wu, Z., Chebyshev type inequality for stochastic Bernstein polynomials, Proc. Amer. Math. Soc., 147, 671-679 (2019) · Zbl 1410.41012
[17] Adell, J. A.; Cárdenas-Morales, D., Stochastic Bernstein polynomials: uniform convergence in probability with rates, Adv. Comput. Math., 46, 16 (2020) · Zbl 1436.62393
[18] Cucker, F.; Smale, S., On the mathematical foundations of learning, Bull. Amer. Math. Soc. (N.S.), 39, 1-49 (2001) · Zbl 0983.68162
[19] Cucker, F.; Zhou, D. X., Learning Theory: An Approximation Theory Viewpoint (2007), Cambridge University Press · Zbl 1274.41001
[20] Bobkov, S.; Ledoux, M., One-dimensional empirical measures, order statistics and Kantorovich transport distances, Mem. Amer. Math. Soc., 261, 1259 (2019) · Zbl 1454.60007
[21] Casella, G.; Berger, R., (Statistical Reference. Statistical Reference, Duxbury Advanced Series (2002))
[22] Bustamante, J., Estimates of positive linear operators in terms of second-order moduli, J. Math. Anal. Appl., 345, 203-212 (2008) · Zbl 1143.41006
[23] Li, J.; Wang, R.; Xu, M.; Fang, Q., Piecewise linear approximation methods with stochastic sampling sites, J. Comput. Appl. Math., 329, 173-178 (2018) · Zbl 1373.41004
[24] Wu, Z.; Zhou, X., Polynomial convergence order of stochastic Bernstein approximation, Adv. Comput. Math., 46, 8 (2020) · Zbl 1436.62395
[25] Farin, G.; Hoschek, J.; Kim, M. S., Handbook of Computer Aided Geometric Design (2002), Elsevier · Zbl 1003.68179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.