×

Delay-driven spatial patterns in a predator-prey model with constant prey harvesting. (English) Zbl 1490.35029

Summary: This paper deals with a predator-prey model with time delay and constant prey harvesting. We investigate the effect of the time delay on the stability of the coexistence equilibrium and demonstrate that time delay can induce spatial patterns. Furthermore, a Hopf bifurcation occurs when the delay increases to a critical value. By applying normal form theory and the center manifold theorem, we develop the explicit formulae that determines the stability and direction of the bifurcating periodic solutions. Finally, we show how the initial condition affects the types of spatial patterns by numerical simulations.

MSC:

35B32 Bifurcations in context of PDEs
35B36 Pattern formations in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
35R10 Partial functional-differential equations
92D30 Epidemiology

Software:

PRED_PREY
Full Text: DOI

References:

[1] Brauer, F.; Soudac, AC, Stability regions in predator-prey systems with constant-rate prey harvesting, J. Math. Biol., 8, 55-71 (1979) · Zbl 0406.92020 · doi:10.1007/BF00280586
[2] Dai, G.; Tang, M., Coexistence region and global dynamics of a harvested predator-prey systems, SIAM J. Appl. Math., 58, 193-210 (1998) · Zbl 0916.34034 · doi:10.1137/S0036139994275799
[3] Xiao, D.; Ruan, S., Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting, Fields Inst. Commun., 21, 493-506 (1999) · Zbl 0917.34029
[4] Xiao, D.; Jennings, LS, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65, 737-753 (2005) · Zbl 1094.34024 · doi:10.1137/S0036139903428719
[5] Ji, L.; Wu, C., Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge, Nonlinear Anal. Real World Appl., 11, 4, 2285-2295 (2015) · Zbl 1203.34070 · doi:10.1016/j.nonrwa.2009.07.003
[6] Volterra, V., Variazionie fluttuazioni del numbero \(d^{\prime }\) individui in specie animal conviventi, Mem. Acad. Lincei., 2, 31-113 (1926) · JFM 52.0450.06
[7] Volterra, V., Lecons sur la th \(\acute{e}\) orie mathematique de la lutte pou la vie (1931), Paris: Gauthier-Villars, Paris · JFM 57.0466.02
[8] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), New York: Academic Press, New York · Zbl 0777.34002
[9] Ruan, S., Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays, Q. Appl. Math., 59, 159-73 (2001) · Zbl 1035.34084 · doi:10.1090/qam/1811101
[10] Beretta, E.; Kuang, Y., Convergence results in a well-known delayed predator-prey system, J. Math. Anal. Appl., 204, 840-53 (1996) · Zbl 0876.92021 · doi:10.1006/jmaa.1996.0471
[11] Zuo, W.; Wei, J., Stability and Hopf bifurcation in a diffusive predator-prey system with delay effect, Nonlinear Anal. Real World Appl., 12, 4, 1998-2011 (2011) · Zbl 1221.35053 · doi:10.1016/j.nonrwa.2010.12.016
[12] Brauer, F., Stability of some population models with delay, Math. Biosci., 33, 345-358 (1977) · Zbl 0362.92014 · doi:10.1016/0025-5564(77)90148-1
[13] Martin, A.; Ruan, S., Predator-prey models with delay and prey harvesting, J. Math. Biol., 43, 247-267 (2001) · Zbl 1008.34066 · doi:10.1007/s002850100095
[14] Ruan, S., On nonlinear dynamics of predator-prey models with discrete delay, Math. Model. Nat. Phenom., 4, 2, 140-188 (2009) · Zbl 1172.34046 · doi:10.1051/mmnp/20094207
[15] Xia, J.; Liu, Z.; Yuan, R.; Ruan, S., The effects of harvesting and time delay on predator-prey systems with Holling type II functional response, SIAM J. Appl. Math., 70, 4, 1178-1200 (2009) · Zbl 1203.34137 · doi:10.1137/080728512
[16] Meng, XY; Huo, HF; Zhang, XB, The effects of harvesting and delay on predator-prey system with Beddington-DeAngelis function response, Int. J. Biomath., 5, 125008 (2012) · Zbl 1297.92068 · doi:10.1142/S1793524511001489
[17] Tian, C.; Zhang, L., Delay-driven irregular spatiotemporal patterns in a plankton system, Phys. Rev. E, 88 (2013) · doi:10.1103/PhysRevE.88.012713
[18] Banerjee, M.; Zhang, L., Influence of discrete delay on pattern formation in a ratio-dependent prey-predator model, Chaos Soliton Fractals, 67, 73-81 (2014) · Zbl 1349.92115 · doi:10.1016/j.chaos.2014.06.012
[19] Tian, C., Delay-driven spatial patterns in a plankton allelopathic system, Chaos, 22 (2012) · Zbl 1331.92150 · doi:10.1063/1.3692963
[20] Wang, WM; Zhang, L.; Wang, HL; Li, ZQ, Pattern formation of a predator-prey system with Ivlev-type functional response, Ecol. Model., 221, 131-140 (2010) · doi:10.1016/j.ecolmodel.2009.09.011
[21] Zhao, HY; Zhang, XB; Huang, XX, Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion, Appl. Math. Comput., 266, 462-480 (2015) · Zbl 1410.37089
[22] Bao, XM; Tian, CR, Delay driven vegetation patterns of a plankton system on a network, Physica A, 521, 74-88 (2019) · Zbl 1514.92179 · doi:10.1016/j.physa.2019.01.062
[23] Jankovica, M.; Petrovskiia, S.; Banerjee, M., Delay driven spatiotemporal chaos in single species population dynamics models, Theor. Popul. Biol., 110, 51-62 (2016) · Zbl 1365.92094 · doi:10.1016/j.tpb.2016.04.004
[24] Song, LP; Zhang, RP; Feng, LP; Shi, Q., Pattern dynamics of a spatial epidemic model with time delay, Appl. Math. Comput., 292, 390-399 (2017) · Zbl 1410.34139
[25] Freedman, HI; Rao, VSH, The trade-off between mutual interference and time lags in predator-prey system, Bull. Math. Biol., 45, 991-1004 (1983) · Zbl 0535.92024 · doi:10.1016/S0092-8240(83)80073-1
[26] Ruan, SG; Wei, JJ, On the zero of some transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10, 863-874 (2003) · Zbl 1068.34072
[27] Hassard, B.; Kazarino, D.; Wan, Y., Theory and Applications of Hopf Bifurcation (1981), Cambridge: Cambridge University Press, Cambridge · Zbl 0474.34002
[28] Sherratt, J.; Eagan, B.; Lewis, M., Oscillations and chaos behind predator-prey invasion: Mathematical artifact or ecological reality?, Philos. Trans. R. Soc. Lond., B352, 21-38 (1997) · doi:10.1098/rstb.1997.0003
[29] Medvinsky, A.; Petrovskii, S.; Tikhonova, I.; Malchow, H.; Li, BL, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 44, 311-370 (2002) · Zbl 1001.92050 · doi:10.1137/S0036144502404442
[30] Gravie, M., Finite-difference schemes for reaction-diffusion equations modelling predator-prey interactions in matlab, Bull. Math. Biol., 69, 931-956 (2007) · Zbl 1298.92081 · doi:10.1007/s11538-006-9062-3
[31] Wang, WW; Zhang, L.; Wang, HL; Li, ZQ, Pattern formation of a predator-prey system with lvlev-type functional response, Ecol. Model., 221, 131-140 (2010) · doi:10.1016/j.ecolmodel.2009.09.011
[32] Petrovskii, SV; Malchow, H., A minimal model of pattern formation in a prey-predator system, Math. Comput. Model., 29, 49-63 (1999) · Zbl 0990.92040 · doi:10.1016/S0895-7177(99)00070-9
[33] Banerjee, M.; Petrovskii, S., Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system, Theor. Ecol., 4, 37-53 (2011) · doi:10.1007/s12080-010-0073-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.