×

Structure of unital 3-fields. (English) Zbl 1489.12021

A set \(\mathcal R\) with two ternary operations \(\nu :{\mathcal R}^3\to \mathcal R \) and \(\mu : {\mathcal R}^3 \to \mathcal R \) is called a \((3,3)\)-ring if 1) both operations are totally associative, 2) they are connected by a ternary analog of the distributive law and 3) for all \(a,b,c \in \mathcal R\) there exists a unique solution of the equation \(\nu (a,b,x)=c\). The last condition means that \((\mathcal R, \nu)\) is a ternary group. The operations \(\nu\) and \(\mu\) are called an additive and a multiplicative operations correspondingly. If \((\mathcal R, \mu)\) is also a ternary group the \((3,3)\)-ring is called a 3-field. Ternary analogues of the concepts of a vector space and a polynomial algebra in \(n\) variables over a 3-field are also introduced. The mentioned objects are investigated and many examples are given.

MSC:

12K99 Generalizations of fields
11S99 Algebraic number theory: local fields
20N10 Ternary systems (heaps, semiheaps, heapoids, etc.)

References:

[1] Bagger, J.; Lambert, N., Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev., D77, 065008 (2008)
[2] Bohle, D.; Werner, W., A K-theoretic approach to the classification of symmetric spaces, J Pure App Algebra, 219, 10, 4295-4321 (2015) · Zbl 1434.46042 · doi:10.1016/j.jpaa.2015.02.003
[3] Bosch, S.; Guentzer, U.; Remmert, R., Non-Archimedean Analysis (1984) · Zbl 0539.14017 · doi:10.1007/978-3-642-52229-1
[4] Celakoski, N., On (F,G)-rings, God Zb Med Fak Skopje, 28, 5-15 (1977) · Zbl 0448.16024
[5] Chu, C-H, Jordan structures in geometry and analysis (2012), Cambridge: Cambridge University Press, Cambridge · Zbl 1238.17001
[6] Crombez, G., The post coset theorem for (n,m)-rings, Ist. Veneto Sci. Lett. Arti, 131, 1-7 (1973) · Zbl 0338.08007
[7] Crombez, G.; Timm, J., On (n,m)-quotient rings, Abh. Math. Semin. Univ. Hamb., 37, 200-203 (1972) · Zbl 0247.08002 · doi:10.1007/BF02999696
[8] Čupona, G., On [m,n]-rings, Bull. Soc. Math. Phys. Macedoine, 16, 5-9 (1965) · Zbl 0144.25503
[9] de Azcarraga, JA; Izquierdo, JM, n-Ary algebras: a review with applications, J. Phys., A43, 293001 (2010) · Zbl 1202.81187
[10] Dörnte, W., Unterschungen über einen verallgemeinerten Gruppenbegriff, Math. Z., 29, 1-19 (1929) · JFM 54.0152.01 · doi:10.1007/BF01180515
[11] Duplij, S.; Nikitin, AG; Boyko, VM, Ternary Hopf algebras, Symmetry in nonlinear mathematical physics, 25-34 (2001), Kiev: Institute of Mathematics, Kiev
[12] Elgendy, HA; Bremner, MR, Universal associative envelopes of (n+1)-dimensional n-Lie algebras, Comm. Algebra, 40, 5, 1827-1842 (2012) · Zbl 1260.17005 · doi:10.1080/00927872.2011.558549
[13] Higgins, PJ, Groups with multiple operators, Proc. Lond. Math. Soc., 3, 6, 367-416 (1956) · Zbl 0073.01704
[14] Jacobson, N., Basic Algebra II (1989), New York: Freeman and Company, New York · Zbl 0694.16001
[15] Kerner, R., Ternary algebraic structures and their applications in physics, 15 (2000), Paris: Univ. P. & M. Curie, Paris
[16] Kurosh, AG, Multioperator rings and algebras, Russ. Math. Surv., 24, 1-13 (1969) · Zbl 0204.35701 · doi:10.1070/RM1969v024n01ABEH001334
[17] Leeson, JJ; Butson, AT, On the general theory of (m,n) rings, Algebra Univers, 11, 42-76 (1980) · Zbl 0461.16029 · doi:10.1007/BF02483082
[18] Nambu, Y., Generalized Hamiltonian dynamics, Phys. Rev., D7, 2405-2412 (1973) · Zbl 1027.70503
[19] Post, EL, Polyadic groups, Trans. Amer. Math. Soc., 48, 208-350 (1940) · JFM 66.0099.01 · doi:10.1090/S0002-9947-1940-0002894-7
[20] Upmeier, H., Symmetric Banach manifolds and Jordan C*-algebras (1985), Amsterdam: North-Holland Publishing, Amsterdam · Zbl 0561.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.