×

Existence of normalized solutions for the coupled elliptic system with quadratic nonlinearity. (English) Zbl 1487.35207

Summary: In the present paper, we study the existence of the normalized solutions for the following coupled elliptic system with quadratic nonlinearity \[ \begin{cases} -\Delta u-\lambda_1 u=\mu_1 |u| u+\beta uv & \text{in }\mathbb{R}^N, \\ -\Delta v-\lambda_2 v=\mu_2 |v| v+\frac{\beta}{2} u^2 & \text{in }\mathbb{R}^N, \end{cases} \] where \(u,v\) satisfying the additional condition \[ \int\limits_{\mathbb{R}^N} u^2 \mathrm{d}x = a_1,\quad \int\limits_{\mathbb{R}^N} v^2 \mathrm{d}x= a_2. \] On the one hand, we prove the existence of minimizer for the system with \(L^2\)-subcritical growth \((N\leq 3)\). On the other hand, we prove the existence results for different ranges of the coupling parameter \(\beta > 0\) with \(L^2\)-supercritical growth \((N=5)\). Our argument is based on the rearrangement techniques and the minimax construction.

MSC:

35J61 Semilinear elliptic equations
35J20 Variational methods for second-order elliptic equations
35Q55 NLS equations (nonlinear Schrödinger equations)
49J40 Variational inequalities

References:

[1] S. K. Adhikari, Superfluid Fermi-Fermi mixture: phase diagram, stability, and soliton formation, Phys. Rev. A 76 (2007), 053609.
[2] A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc. 75 (2007), 67-82. · Zbl 1130.34014
[3] T. Bartsch and L. Jeanjean, Normalized solutions for nonlinear Schrödinger systems, Proc. Eding. Math. A. 148 (2018), 225-242. · Zbl 1393.35035
[4] T. Bartsch, L. Jeanjean, and N. Soave, Normalized solutions for a system of coupled cubic Schrödinger equations on R3, J. Math Pures. Appl. 106 (2016), 583-614. · Zbl 1347.35107
[5] T. Bartsch and N. Soave, A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal. 272 (2017), 4998-5037. · Zbl 1485.35173
[6] T. Bartsch, X.-X. Zhong, and W.-M. Zou, Normalized solutions for a coupled Schrödinger system, Math. Ann. 380 (2020), 1713-1740. · Zbl 1479.35762
[7] Z. Chen and W. Zou, Existence and symmetry of positive ground states for a doubly critical Schrödinger system, Trans. Amer. Math. Soc. 367 (2012), 3599-3646. · Zbl 1315.35091
[8] Z. Chen and W. Zou, An optimal constant for the existence of least energy solutions of a coupled Schrödinger system, Calc. Var. Partial Differ. Equ. 48 (2013), 695-711. · Zbl 1286.35104
[9] M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differ. Integral Equ. 17 (2004), 297-330. · Zbl 1174.35528
[10] M. Colin and T. Colin, A numerical model for the Raman amplification for laser-plasma interaction, J. Comput. Appl. Math. 193 (2006), 535-562. · Zbl 1092.35101
[11] M. Colin and T. Colin, A multi-D model for Raman amplification, ESAIM Math. Model. Numer. Anal. 45 (2011), 1-22. · Zbl 1452.76282
[12] M. Colin and M. Ohta, Stability of solitary waves for derivative nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. NonLinéaire, 23 (2006), 753-764. · Zbl 1104.35050
[13] M. Colin and M. Ohta, Bifurcation from semitrivial standing wavesand ground states for a system of nonlinear Schrödinger equations, SIAM J. Math. Anal. 44 (2012), 206-223. · Zbl 1238.35010
[14] M. Colin, T. Colin, and M. Ohta, Instability of standing waves for asystem of nonlinear Schrödinger equations with three-wave interaction, Funkcial. Ekvac. 52 (2009), 371-380. · Zbl 1188.35176
[15] B.-D. Esry, C.-H. Greene, J.-P. Burke, and J.-L. Bohn, Hartree-Focktheory for double condensates, Phys. Rev. Lett. 78 (1997), 3594-3597.
[16] N. Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge Tracts in Mathematics, vol. 107, Cambridge University Press, Cambridge, 1993. · Zbl 0790.58002
[17] T.-X. Gou, L. Jeanjean, Multiple positive normalized solutions for nonlinear Schrödinger systems, Nonlinearity 31 (2018), 2319-2345. · Zbl 1396.35009
[18] N. Ikoma, Compactness of minimizing sequences in nonlinearSchrödinger systems under multiconstraint conditions, Adv. Nonlinear Stud. 14 (2014), 115-136. · Zbl 1297.35218
[19] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 10 (1997), 1633-1659. · Zbl 0877.35091
[20] S. Kesavan, Symmetrization and Applications, Series in Analysis, vol. 3, World Scientific Publishing Co. Pvt Ltd, Hackensack, NJ, 2006, pp. xii+14. · Zbl 1110.35002
[21] M.-K. Kwong, Uniqueness of positive solutions of Δu−u+up=0 in Rn, Arch. Rational Mech. Anal. 105 (1989), 243-266. · Zbl 0676.35032
[22] Z.-P. Liang and J.-T. Liu, Existence of constrained minimizer for a quadratically coupled Schrödinger systems, Appl. Anal. 99 (2018), 1-11.
[23] H.-E. Lieb, M. Loss, Analysis, Second Edition, American Mathematical Society, 2001, p. 14. · Zbl 0966.26002
[24] T.-C. Lin, J. Wei, Ground state of N coupled nonlinear Schrödinger equations in Rn, n≤3, Comm. Math. Phys. 255 (2005), 629-653. · Zbl 1119.35087
[25] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. HenriPoincaré Anal. Non Linéaire 1 (1984), 109-145. · Zbl 0541.49009
[26] Z.-L. Liu, Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys. 282 (2008), 721-731. · Zbl 1156.35093
[27] B. Malomed, Multi-component Bose-Einstein Condensates: Theory, Emergent Nonlinear Phenomena in Bose-Einstein Condensation, vol. 45, Springer-Verlag, Berlin, 2008, pp. 287-305. · Zbl 1151.82369
[28] R. Mandel, Minimal energy solutions and infinitely many bifurcating branches for a class of saturated nonlinear Schrödinger systems, Adv. Nonlinear Stud. 16 (2016), 95-113. · Zbl 1334.35319
[29] B. Noris, H. Tavares, S. Terracini, and G. Verzini, Uniform Hölderbounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math. 63 (2010), 267-302. · Zbl 1189.35314
[30] B. Noris, H. Tavares, S. Terracini, and G. Verzini, Convergence of minimax structures and continuation of critical points for singularly perturbed systems, J. Eur. Math. Soc. 14 (2012), 1245-1273. · Zbl 1248.35197
[31] S. Peng, Q. Wang, and Z.-Q. Wang, On coupled nonlinear Schröodinger systems with mixed couplings, Trans. Amer. Math. Soc. 371 (2019), 7559-7583. · Zbl 1439.35162
[32] S. Peng and Z.-Q. Wang, Segregated and synchronized vector solutions for nonlinear Schrodinger systems, Arch. Rational Mech. Anal. 208 (2013), 305-339. · Zbl 1260.35211
[33] A. Pomponio, Ground states for a system of nonlinear Schrödinger equations with three wave interaction, J. Math. Phys. 51 (2010), 2816. · Zbl 1309.81085
[34] P. Quittner and P. Souplet, Superlinear parabolic problems, blow-up, global existence and steady states, Birkhäser Advanced Texts Basler Lehrbücher Birkhuser 293 (2007), 171-189. · Zbl 1128.35003
[35] D.-A. Russell, D.-F. DuBois, and H.-A. Rose, Nonlinear saturation of simulated Raman scattering in laser hot spots, Phys. Plasmas 6 (1999), 1294-1317.
[36] Y. Sato and Z.-Q. Wang, Multiple positive solutions for Schröodinger systems with mixed couplings, Calc. Var. PDEs, 54 (2015), 1373-1392. · Zbl 1326.35131
[37] Y. Sato, Z.-Q. Wang, Least energy solutions for nonlinear Schrödinger systems with mixed attractive and repulsive couplings, Adv. Nonlinear Stud. 15 (2015), 1-22. · Zbl 1316.35269
[38] J.-P. Shi, J. Wang, Classification and stability results for the coupled nonlinear elliptic system with quadratic nonlinearities, Preprint, 2021.
[39] B. Sirakov, Least energy solitary waves for a system of nonlinearSchrödinger equations in Rn, Commun. Math. Phys. 271 (2007), 199-221. · Zbl 1147.35098
[40] J. Wang, Solitary waves for coupled nonlinear elliptic system with nonhomogeneous nonlinearities, Calc. Var. Partial Differ. Equ. 38 (2017), 56-38. · Zbl 1370.35130
[41] J. Wang, Instability theorem of the bound states for abstract Hamiltonian PDEs and its application, Submitted, 2022.
[42] J. Wang, J.-P. Shi, Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction, Calc. Var. Partial Differ. Equ. 168 (2017), 56-168. · Zbl 1397.35106
[43] J. Wang, H.-F. Zhou, Existence of normalized solution for the coupled elliptic system with nonhomenous nonlinearity, Preprint, 2022.
[44] J.-C. Wei, Y.-Z. Wu, Ground states of nonlinear Schrödinger systems with mixed couplings, J. Math Pures Appl. 141 (2020), 50-88. · Zbl 1448.35176
[45] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996, pp. x+162. · Zbl 0856.49001
[46] H.-L. Wu, Y.-Q. Li, Ground state for a coupled elliptic system with critical growth, Adv. Nonlinear Stud. 18 (2018), 1-15. · Zbl 1383.35079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.