×

An incompatibility result on non-Archimedean integration. (English) Zbl 1486.26063

Summary: We prove that a Riemann-like integral on non-Archimedean extensions of \(\mathbb{R}\) cannot assign an integral to every function whose standard part is measurable and simultaneously satisfy the fundamental theorem of calculus. We also discuss how existing theories of non-Archimedean integration deal with the incompatibility of these conditions.

MSC:

26E30 Non-Archimedean analysis
26A42 Integrals of Riemann, Stieltjes and Lebesgue type
28B99 Set functions, measures and integrals with values in abstract spaces
Full Text: DOI

References:

[1] Berarducci, A.; Otero, M., An additive measure in o-minimal expansions of fields, Quart. J. Math., 55, 411-419 (2004) · Zbl 1065.03020 · doi:10.1093/qmath/hah010
[2] Bottazzi, E., Grid functions of nonstandard analysis in the theory of distributions and in partial differential equations, Adv. Math., 345, 429-482 (2019) · Zbl 1423.46056 · doi:10.1016/j.aim.2019.01.024
[3] Bottazzi, E., Spaces of measurable functions on the Levi-Civita field, Indagat. Math., 31, 4, 650-694 (2020) · Zbl 1454.26045 · doi:10.1016/j.indag.2020.06.005
[4] Bottazzi, E., A real-valued measure on non-Archimedean field extensions of \(\mathbb{R} \), p-Adic Num. Ultrametr. Anal. Appl., 14, 0 (2022) · Zbl 1494.26063
[5] Bottazzi, E.; Eskew, M., Integration with filters (2020)
[6] Conway, J. H., On Numbers and Games (2001), Natick, Massachusetts: A. K. Peters, Ltd., Natick, Massachusetts · Zbl 0972.11002
[7] Costin, O.; Ehrlich, P.; Friedman, H., Integration on the surreals: a conjecture of Conway, Kruskal and Norton (2015)
[8] Cutland, N. J., Nonstandard measure theory and its applications, Bull. London Math. Soc., 15, 529-589 (1983) · Zbl 0529.28009 · doi:10.1112/blms/15.6.529
[9] Flynnn, D.; Shamseddine, K., On integrable delta functions on the Levi-Civita field, p-Adic Num. Ultrametr. Anal. Appl., 10, 1, 32-56 (2018) · Zbl 1428.46048 · doi:10.1134/S207004661801003X
[10] Fornasiero, A., Integration on Surreal Numbers (2004)
[11] Gillman, L., An axiomatic approach to the integral, Amer. Math. Month., 100, 1, 16-25 (1993) · Zbl 0784.26009 · doi:10.1080/00029890.1993.11990359
[12] Kaiser, T., Lebesgue measure and integration theory on non-archimedean real closed fields with archimedean value group, Proc. London Math. Soc., 116, 2, 209-247 (2018) · Zbl 1436.03211 · doi:10.1112/plms.12070
[13] Klement, E. P.; Mesiar, R., Discrete integrals and axiomatically defined functionals, Axioms, 1, 9-20 (2012) · Zbl 1293.28008 · doi:10.3390/axioms1010009
[14] Shamseddine, K., New results on integration on the Levi-Civita field, Indagat. Math., 24, 1, 199-211 (2013) · Zbl 1300.26019 · doi:10.1016/j.indag.2012.08.005
[15] Shamseddine, K.; Berz, M., Measure theory and integration on the Levi-Civita field, Contemp. Math., 319, 369-388 (2003) · Zbl 1130.12301 · doi:10.1090/conm/319/05583
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.