×

State representations of convolutional codes over a finite ring. (English) Zbl 1486.14035

For any prime \(p\) and integer \(r\ge1\), \(\mathbb{Z}_{p^r}\) is a finite ring and any element \(a\in \mathbb{Z}_{p^r}\) is of the form \(a=\alpha_0+\alpha_1p+\cdots+\alpha^{r-1}p^{r-1}\), \(\alpha_i\in\{0,1,2,\ldots, p-1\}\) for \(0\le i\le r-1\). A convolution code \(\mathcal{C}\) over the ring \(\mathbb{Z}_{p^r}\) can be defined as a free \(\mathbb{Z}_{p^r}\)-submodule of \(\mathbb{Z}_{p^r}^n\). In this article, authors study convolution codes described by the linear system \(\Sigma=(A,B,C,D)\) given by the input-state-output representations \((x_{t+1}=x_tA+u_tB; y_t=x_tC+u_t D)\), where \(x_t\)-the state vector with \(x_0=0\), \(u_t\)-the input, \(y_t\)-the output for at any time \(t\) and \(A,B,C,D\) are matrices over \(\mathbb{Z}_{p^r}\). They show that the set of finite weight input-state-output trajectories of \(\Sigma\) that are polynomials over \(\mathbb{Z}_{p^r}\) has the structure of a free \(\mathbb{Z}_{p^r}\)-submodule of \(\mathbb{Z}_{p^r}^n\), a convolution code \(\mathcal{C}(A,B,C,D)\) with finite support.

MSC:

94B10 Convolutional codes

References:

[1] Brewer, W., Linear Systems over Commutative Rings (1986), Dover Publications Inc.: Dover Publications Inc. New York · Zbl 0607.13001
[2] Calderbank, A. R.; Sloane, N. J.A., Modular and p-adic cyclic codes, Des. Codes Cryptogr., 6, 1, 21-35 (1995) · Zbl 0848.94020
[3] Carriegos, M.; Trobajo, M. T., Linear systems over Hermite rings. Some pole-placement results, Authorea (September 11, 2020)
[4] DeCastro-García, N., Feedback equivalence of convolutional codes over finite rings, Open Math., 15, 1, 1495-1508 (2017) · Zbl 1417.94110
[5] DeCastro-García, N.; García-Planas, M. I., Concatenated linear systems over rings and their application to construction of concatenated families of convolutional codes, Linear Algebra Appl., 542, 624-647 (2018) · Zbl 1418.93056
[6] DeCastro-García, N.; Carriegos, M. V.; Muñoz Castañeda, A. L., A characterization of von Neumann rings in terms of linear systems, Linear Algebra Appl., 494, 236-244 (2016) · Zbl 1338.13019
[7] Fagnani, F.; Zampieri, S., System-theoretic properties of convolutional codes over rings, IEEE Trans. Inf. Theory, 47, 6, 2256-2274 (2001) · Zbl 1028.94033
[8] Fagnani, F.; Zampieri, S., Minimal and systematic convolutional codes over finite Abelian groups, Linear Algebra Appl., 378, 31-59 (2004) · Zbl 1079.94019
[9] Fornasini, E.; Pinto, R., Matrix fraction descriptions in convolutional coding, Linear Algebra Appl., 392, 119-158 (2004) · Zbl 1060.94043
[10] Fornasini, E.; Valcher, M. E., Multidimensional systems with finite support behaviors: signal structure, generation and detection, SIAM J. Control Optim., 36, 2, 760-779 (1998) · Zbl 0913.93033
[11] Gluesing-Luerssen, H.; Schneider, G., State space realizations and monomial equivalence for convolutional codes, Linear Algebra Appl., 425, 2, 518-533 (2007) · Zbl 1140.94016
[12] Napp, D.; Herranz, V.; Perea, C., 1/n turbo codes from linear system point of view, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 114, 118 (2020) · Zbl 1475.94200
[13] Johannesson, R.; Wan, Z. X.; Wittenmark, E., Some structural properties of convolutional codes over rings, IEEE Trans. Inf. Theory, 44, 2, 839-845 (1998) · Zbl 0923.94032
[14] Johannesson, R.; Zigangirov, K. Sh., Fundamentals of Convolutional Coding (2015), IEEE Press: IEEE Press New York
[15] Kailath, T., Linear Systems, Prentice Hall Information and System Sciences Series (1980), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0458.93025
[16] Kuijper, M.; Pinto, R., Minimal trellis construction for finite support convolutional ring codes, Lect. Notes Comput. Sci., 5228, 95-106 (2008) · Zbl 1166.94353
[17] Kuijper, M.; Pinto, R., On minimality of convolutional ring encoders, IEEE Trans. Automat. Contr., 55, 11, 4890-4897 (2009) · Zbl 1367.94382
[18] Kuijper, M.; Pinto, R., An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings, Des. Codes Cryptogr., 83, 2, 283-305 (May 2017) · Zbl 1381.94054
[19] Kuijper, M.; Pinto, R., Minimal Trellis Construction for Finite Support Convolutional Ring Codes, (Barbero, A., Coding Theory and Applications (ICMCTA). Coding Theory and Applications (ICMCTA), LN in Computer Science, vol. 5228 (2008), Springer), 95-106 · Zbl 1166.94353
[20] Kuijper, M.; Pinto, R.; Polderman, J. W., The predictable degree property and row reducedness for systems over a finite ring, Linear Algebra Appl., 425, 2-3, 776-796 (2007) · Zbl 1127.93038
[21] Kuijper, M.; Polderman, J. W., Reed-Solomon list decoding from a system theoretic perspective, IEEE Trans. Inf. Theory, IT-50, 259-271 (2004) · Zbl 1288.94113
[22] Kuijper, M.; Schindelar, K., Minimal Gröbner bases and the predictable leading monomial property, Linear Algebra Appl., 434, 1, 104-116 (2011) · Zbl 1200.13050
[23] Kuijper, M.; van Dijk, M.; Hollmann, H.; Oostveen, A. J., A unifying system-theoretic framework for errors-and-erasures Reed-Solomon decoding, (Boztas, S.; Shparlinski, I. E., Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, LN in Computer Science, vol. 2227 (2001), Springer), 343-352 · Zbl 1059.94036
[24] Lieb, J.; Rosenthal, J., Erasure decoding of convolutional codes using first order representations (2020), Arxiv
[25] Alahmadi, A.; Shi, M.; Solé, P., Codes and Rings (2017), Elsevier, Academic Press · Zbl 1386.94002
[26] Massey, J. L.; Mittelholzer, T., Convolutional codes over rings, (Proc. 4th Joint Swedish-Soviet Int. Workshop Information Theory (1989)), 14-18
[27] Massey, J. L.; Sain, M. K., Codes, automata, and continuous systems: explicit interconnections, IEEE Trans. Autom. Control, 12, 644-650 (1967)
[28] Muñoz Castañeda, A. L.; Muñoz-Porras, J. M.; Plaza-Martín, F. J., Rosenthal’s decoding algorithm for certain 1-dimensional convolutional codes, IEEE Trans. Inf. Theory, 65, 12, 7736-7741 (2019) · Zbl 1433.94154
[29] Napp, D.; Perea, C.; Pinto, R., Input-state-output representations and constructions of finite support 2D convolutional codes, Adv. Math. Commun., 4, 4, 533-545 (2010) · Zbl 1213.94187
[30] Napp, D.; Pereira, R.; Pinto, R.; Rocha, P., Periodic state-space representations of periodic convolutional codes, Cryptogr. Commun., 11, 4, 585-595 (2019) · Zbl 1454.94132
[31] Napp, D.; Pinto, R.; Rocha, C., Noncatastrophic convolutional codes over a finite ring, J. Algebra Appl., 0, 0, Article 2350029 pp. (2021)
[32] Napp, D.; Rocha, P., Autonomous multidimensional systems and their implementation by behavioral control, Syst. Control Lett., 59, 3-4, 203-208 (2010) · Zbl 1223.93020
[33] Rosenthal, J., An optimal control theory for systems defined over finite rings, (Blondel, V. D.; Sontag, E. D.; Vidyasagar, M.; Willems, J. C., Open Problems in Mathematical Systems and Control Theory (1998), Springer-Verlag: Springer-Verlag London, Berlin, New York), 193-201, chapter 38
[34] Rosenthal, J., Connections between linear systems and convolutional codes, (Marcus, Brian; Rosenthal, Joachim, Codes, Systems and Graphical Models. Codes, Systems and Graphical Models, The IMA Volumes in Mathematics and Its Applications, vol. 123 (2001), Springer-Verlag: Springer-Verlag New York), 39-66 · Zbl 0993.94559
[35] Rosenthal, J.; Wang, X., Output feedback pole placement with dynamic compensators, IEEE Trans. Inf. Theory, AC-41, 6, 830-843 (1996) · Zbl 0938.93026
[36] Rosenthal, J.; York, E. V., BCH convolutional codes, IEEE Trans. Inf. Theory, 45, 6, 1833-1844 (1999) · Zbl 0958.94035
[37] Carriegos, M. V.; DeCastro-García, N.; Muñoz Castañeda, A. L., Linear representations of convolutional codes over rings (2016), pp. 1-17
[38] Carriegos, M. V.; Muñoz Castañeda, A. L., On the k-theory of feedback actions on linear systems, Linear Algebra Appl., 440, 233-242 (2014) · Zbl 1302.93070
[39] Wood, J., A formal theory of matrix primeness, Math. Control Signals Syst., 11, 1, 40-78 (1998) · Zbl 0898.93008
[40] Zerz, E., Primeness of multivariate polynomial matrices, Syst. Control Lett., 29, 3, 139-145 (1996) · Zbl 0866.93053
[41] Zerz, E., On multidimensional convolutional codes and controllability properties of multidimensional systems over finite rings, Asian J. Control, 12, 2, 119-126 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.