×

Impact of Michaelis-Menten type harvesting in a Lotka-Volterra predator-prey system incorporating fear effect. (English) Zbl 1485.92094

Summary: We propose and study a Lotka-Volterra predator-prey system incorporating both Michaelis-Menten-type prey harvesting and fear effect. By qualitative analysis of the eigenvalues of the Jacobian matrix we study the stability of equilibrium states. By applying the differential inequality theory we obtain sufficient conditions that ensure the global attractivity of the trivial equilibrium. By applying Dulac criterion we obtain sufficient conditions that ensure the global asymptotic stability of the positive equilibrium. Our study indicates that the catchability coefficient plays a crucial role on the dynamic behavior of the system; for example, the catchability coefficient is the Hopf bifurcation parameter. Furthermore, for our model in which harvesting is of Michaelis-Menten-type, the catchability coefficient is within a certain range; increasing the capture rate does not change the final number of prey population, but reduces the predator population. Meanwhile, the fear effect of the prey species has no influence on the dynamic behavior of the system, but it can affect the time when the number of prey species reaches stability. Numeric simulations support our findings.

MSC:

92D25 Population dynamics (general)
37N25 Dynamical systems in biology

References:

[1] Wang, X.; Zanette, L.; Zou, X., Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73, 5, 1179-1204 (2016) · Zbl 1358.34058 · doi:10.1007/s00285-016-0989-1
[2] Wang, X.; Zou, X., Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators, Bull. Math. Biol., 79, 6, 1325-1359 (2017) · Zbl 1372.92095 · doi:10.1007/s11538-017-0287-0
[3] Xiao, Z. W.; Li, Z., Stability analysis of a mutual interference predator-prey model with the fear effect, J. Appl. Sci. Eng., 22, 2, 205-211 (2019)
[4] Kundu, K.; Pal, S.; Samanta, S., Impact of fear effect in a discrete-time predator-prey system, Bull. Calcutta Math. Soc., 110, 3, 245-264 (2019)
[5] Sasmal, S. K., Population dynamics with multiple Allee effects induced by fear factors—A mathematical study on prey-predator interactions, Appl. Math. Model., 64, 1-14 (2018) · Zbl 1480.92180 · doi:10.1016/j.apm.2018.07.021
[6] Chen, F. D.; Chen, W. L., Permanence of a stage-structured predator-prey system, Appl. Math. Comput., 219, 17, 8856-8862 (2013) · Zbl 1288.92016
[7] Chen, F. D.; Xie, X. D., Partial survival and extinction of a delayed predator-prey model with stage structure, Appl. Math. Comput., 219, 8, 4157-4162 (2012) · Zbl 1311.92154
[8] Chen, F. D.; Wang, H. N.; Lin, Y. H.; Chen, W. L., Global stability of a stage-structured predator-prey system, Appl. Math. Comput., 223, 45-53 (2013) · Zbl 1329.92101
[9] Yu, S., Global stability of a modified Leslie-Gower model with Beddington-DeAngelis functional response, Adv. Differ. Equ., 2014 (2014) · Zbl 1343.34137 · doi:10.1186/1687-1847-2014-84
[10] Yu, S.; Chen, F. D., Almost periodic solution of a modified Leslie-Gower predator-prey model with Holling-type II schemes and mutual interference, Int. J. Biomath., 7, 3 (2014) · Zbl 1305.34081 · doi:10.1142/S1793524514500284
[11] Li, Z.; Han, M. A., Global stability of stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes, Int. J. Biomath., 6, 1 (2012) · Zbl 1297.92066 · doi:10.1142/S179352451250057X
[12] Li, Z.; Han, M., Global stability of a predator-prey system with stage structure and mutual interference, Discrete Contin. Dyn. Syst., Ser. B, 19, 1, 173-187 (2014) · Zbl 1287.34071
[13] Lin, X.; Xie, X., Convergences of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes, Adv. Differ. Equ., 2016 (2016) · Zbl 1419.34158 · doi:10.1186/s13662-016-0887-2
[14] Xiao, Z.; Li, Z.; Zhu, Z., Hopf bifurcation and stability in a Beddington-DeAngelis predator-prey model with stage structure for predator and time delay incorporating prey refuge, Open Math., 17, 1, 141-159 (2019) · Zbl 1427.34114 · doi:10.1515/math-2019-0014
[15] Yue, Q., Permanence of a delayed biological system with stage structure and density-dependent juvenile birth rate, Eng. Lett., 27, 2, 1-5 (2019)
[16] Deng, H.; Chen, F.; Zhu, Z., Dynamic behaviors of Lotka-Volterra predator-prey model incorporating predator cannibalism, Adv. Differ. Equ., 2019 (2019) · Zbl 1485.92084 · doi:10.1186/s13662-019-2289-8
[17] Chen, L.; Wang, Y., Influence of predator mutual interference and prey refuge on Lotka-Volterra predator-prey dynamics, Commun. Nonlinear Sci. Numer. Simul., 18, 11, 3174-3180 (2013) · Zbl 1329.92102 · doi:10.1016/j.cnsns.2013.04.004
[18] Chen, F. D.; Lin, Q. X.; Xie, X. D., Dynamic behaviors of a nonautonomous modified Leslie-Gower predator-prey model with Holling-type III schemes and a prey refuge, J. Math. Comput. Sci., 2017, 266-277 (2017) · Zbl 1427.92071 · doi:10.22436/jmcs.017.02.08
[19] Chen, F.; Guan, X.; Huang, X., Dynamic behaviors of a Lotka-Volterra type predator-prey system with Allee effect on the predator species and density dependent birth rate on the prey species, Open Math., 17, 1, 1186-1202 (2019) · Zbl 1513.34321 · doi:10.1515/math-2019-0082
[20] Ma, Z.; Chen, F.; Wu, C., Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference, Appl. Math. Comput., 219, 15, 7945-7953 (2013) · Zbl 1293.34062
[21] Chen, F.; Ma, Z.; Zhang, H., Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges, Nonlinear Anal., Real World Appl., 13, 6, 2790-2793 (2012) · Zbl 1254.92073 · doi:10.1016/j.nonrwa.2012.04.006
[22] Lin, Q.; Xie, X., Dynamical analysis of a logistic model with impulsive Holling type-II harvesting, Adv. Differ. Equ., 2018 (2018) · Zbl 1445.92242 · doi:10.1186/s13662-018-1563-5
[23] Xie, X. D.; Chen, F. D., Note on the stability property of a cooperative system incorporating harvesting, Discrete Dyn. Nat. Soc., 2014 (2014) · Zbl 1418.92141
[24] Xue, Y.; Xie, X.; Lin, Q., Almost periodic solutions of a commensalism system with Michaelis-Menten type harvesting on time scales, Open Math., 17, 1, 1503-1514 (2019) · Zbl 1513.34202 · doi:10.1515/math-2019-0134
[25] Liu, Y.; Xie, X.; Lin, Q., Permanence, partial survival, extinction, and global attractivity of a nonautonomous harvesting Lotka-Volterra commensalism model incorporating partial closure for the populations, Adv. Differ. Equ., 2018 (2018) · Zbl 1448.92224 · doi:10.1186/s13662-018-1662-3
[26] Chen, B., The influence of commensalism on a Lotka-Volterra commensal symbiosis model with Michaelis-Menten type harvesting, Adv. Differ. Equ., 2019 (2019) · Zbl 1458.37094 · doi:10.1186/s13662-019-1989-4
[27] Wu, R.; Li, L.; Zhou, X., A commensal symbiosis model with Holling type functional response, J. Math. Comput. Sci., 16, 3, 364-371 (2016) · doi:10.22436/jmcs.016.03.06
[28] Zhang, N.; Chen, F.; Su, Q., Dynamic behaviors of a harvesting Leslie-Gower predator-prey model, Discrete Dyn. Nat. Soc., 2011 (2011) · Zbl 1213.37129
[29] Chen, F.; Wu, H.; Xie, X., Global attractivity of a discrete cooperative system incorporating harvesting, Adv. Differ. Equ., 2016 (2016) · Zbl 1419.34157 · doi:10.1186/s13662-016-0996-y
[30] Lei, C., Dynamic behaviors of a nonselective harvesting May cooperative system incorporating partial closure for the populations, Commun. Math. Biol. Neurosci., 2018 (2018)
[31] Xiao, A.; Lei, C., Dynamic behaviors of a nonselective harvesting single species stage-structured system incorporating partial closure for the populations, Adv. Differ. Equ., 2018 (2018) · Zbl 1446.37096 · doi:10.1186/s13662-018-1709-5
[32] Chen, B., Dynamic behaviors of a nonselective harvesting Lotka-Volterra amensalism model incorporating partial closure for the populations, Adv. Differ. Equ., 2018 (2018) · Zbl 1445.92235 · doi:10.1186/s13662-018-1555-5
[33] Lin, Q., Dynamic behaviors of a commensal symbiosis model with nonmonotonic functional response and nonselective harvesting in a partial closure, Commun. Math. Biol. Neurosci., 2018 (2018)
[34] Su, Q.; Chen, F., The influence of partial closure for the populations to a nonselective harvesting Lotka-Volterra discrete amensalism model, Adv. Differ. Equ., 2019 (2019) · Zbl 1485.92104 · doi:10.1186/s13662-019-2209-y
[35] Gupta, R. P.; Chandra, P., Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl., 398, 1, 278-295 (2013) · Zbl 1259.34035 · doi:10.1016/j.jmaa.2012.08.057
[36] Hu, D. P.; Cao, H. J., Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal., Real World Appl., 33, 58-82 (2017) · Zbl 1352.92125 · doi:10.1016/j.nonrwa.2016.05.010
[37] Zhou, Y. C.; Jin, Z.; Qin, J. L., Ordinary Differential Equation and Its Application (2003), Beijing: Science Press, Beijing
[38] Chen, F. D., On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay, J. Comput. Appl. Math., 180, 33-49 (2005) · Zbl 1061.92058 · doi:10.1016/j.cam.2004.10.001
[39] Chen, L. S., Mathematical Models and Methods in Ecology (1988), Beijing: Science Press, Beijing
[40] Zhang, Z. F.; Ding, T. R.; Huang, W. Z.; Dong, Z. X., Qualitative Theory of Differential Equation (1992), Beijing: Science Press, Beijing · Zbl 0779.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.