×

Finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks via non-reduced order method. (English) Zbl 1484.93016

Summary: In this paper, we focus on the finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks. To cope with the effect caused by inertial (second-order) term, most of the previous literature use the variable translation to reduce the order. Different from that, by directly designing a Lyapunov functional and feedback controller, a novel non-reduced order method is proposed in this paper to solve the finite-time (fixed-time) stabilization problem of inertial memristive Cohen-Grossberg neural networks. Two kinds of time delays are considered in our network model, novel criteria are then derived for both cases. Lastly, numerical examples are given to verify the validity of the theoretical results.

MSC:

93D15 Stabilization of systems by feedback
92B20 Neural networks for/in biological studies, artificial life and related topics
93D40 Finite-time stability
93A14 Decentralized systems

References:

[1] M, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE T. Syst. Man Cy., 42, 815-826 (1983) · Zbl 0553.92009
[2] M, Finite-time synchronization of memristor-based Cohen-Grossberg neural networks with time-varying delays, Neurocomputing, 194, 1-9 (2016) · doi:10.1016/j.neucom.2016.02.012
[3] Q, Stability analysis of inertial Cohen-Grossberg neural networks with Markovian jumping parameters, Neurocomputing, 282, 89-97 (2018) · doi:10.1016/j.neucom.2017.12.028
[4] R, Fixed-time synchronization of memristive Cohen-Grossberg neural networks with impulsive effects, Int. J. Control Autom., 16, 2214-2224 (2018) · doi:10.1007/s12555-017-0788-5
[5] R, Nonlinear measure approach for the robust exponential stability analysis of interval inertial Cohen-Grossberg neural networks, Complexity, 21, 459-469 (2016) · doi:10.1002/cplx.21826
[6] K, Stability and dynamics of simple electronic neural networks with added inertia, Physica D, 23, 464-469 (1986) · doi:10.1016/0167-2789(86)90152-1
[7] W, Stability and Chaos in an inertial two-neuron system, Physica D, 105, 267-284 (1997) · Zbl 1029.92500 · doi:10.1016/S0167-2789(97)00008-0
[8] C, Hopf bifurcation and chaos in a single inertial neuron model with time delay, Eur. Phys. J. B, 41, 337-343 (2004) · doi:10.1140/epjb/e2004-00327-2
[9] R, Stability and synchronization of inertial memristive neural networks with time delays, Cogn. Neurodynamics, 10, 437-451 (2016) · doi:10.1007/s11571-016-9392-2
[10] G, Stabilization of second-order memristive neural networks with mixed time delays via nonreduced order, IEEE T. Neur. Net. Lear., 31, 700-706 (2020) · doi:10.1109/TNNLS.2019.2910125
[11] J, Exponential and adaptive synchronization of inertial complex-valued neural networks: A non-reduced order and non-separation approach, Neural Networks, 124, 50-59 (2020) · Zbl 1443.93117 · doi:10.1016/j.neunet.2020.01.002
[12] S, Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: a direct analysis approach, Chaos, Soliton. Fract., 142, 110432 (2021) · Zbl 1496.68285 · doi:10.1016/j.chaos.2020.110432
[13] G, New criteria on global stabilization of delayed memristive neural networks with inertial item, IEEE T. Cybernetics, 50, 2770-2780 (2020) · doi:10.1109/TCYB.2018.2889653
[14] L, Memristor-the missing circuit element, IEEE Trans. Circuit Theory, 18, 507-519 (1971) · doi:10.1109/TCT.1971.1083337
[15] D. Strukov, G. Snider, D. Stewart, R. Williams, The missing memristor found, <i>Nature</i>, <b>453</b> (2008), 80-83.
[16] K, Memristive behavior in thin anodic titania, IEEE Electr. Device L., 31, 737-739 (2010) · doi:10.1109/LED.2010.2049092
[17] J, Compound synchronization of four memristor chaotic oscillator systems and secure communication, Chaos, 23, 1-10 (2013) · Zbl 1319.34093
[18] F, Nonlinear dynamics of memristor oscillators, IEEE T. Circuits I, 58, 1323-1336 (2011) · Zbl 1468.94570
[19] Y, Experimental demonstration of associative memory with memristive neural networks, Neural Networks, 23, 881-886 (2010) · doi:10.1016/j.neunet.2010.05.001
[20] K, Hebbian learning in spiking neural networks with nanocrystalline silicon TFTs and memristive synapses, IEEE T. Nanotechnol., 10, 1066-1073 (2011) · doi:10.1109/TNANO.2011.2105887
[21] D, Global anti-synchronization of complex-valued memristive neural networks with time delays, IEEE T. Cybernetics, 49, 1735-1747 (2019) · doi:10.1109/TCYB.2018.2812708
[22] H, Projective synchronization of fractional order memristor-based neural networks, Neural Networks, 63, 1-9 (2014) · Zbl 1323.93036
[23] A, Lagrange stability of memristive neural networks with discrete and distributed delays, IEEE T. Neur. Net. Lear., 25, 690-703 (2014) · doi:10.1109/TNNLS.2013.2280458
[24] L, Adaptive synchronization of memristor-based neural networks with time-varying delays, IEEE T. Neur. Net. Lear, 26, 2033-2042 (2015) · doi:10.1109/TNNLS.2014.2361776
[25] C, Adaptive synchronization of memristor-based BAM neural networks with mixed delays, Appl. Math. Comput., 322, 100-110 (2018) · Zbl 1426.93121
[26] X, Exponential synchronization of memristive Cohen-Grossburg neural networks with mixed delays, Cogn. Neurodynamics, 8, 239-249 (2014) · doi:10.1007/s11571-013-9277-6
[27] L, Multi-type synchronization dynamics of delayed reaction-diffusion recurrent neural networks with discontinuous activations, Neurocomputing, 401, 182-192 (2020) · doi:10.1016/j.neucom.2020.03.040
[28] Y, Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links, Appl. Math. Comput., 389, 125498 (2021) · Zbl 1508.93328
[29] S, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[30] X, Finite-time synchronization of coupled networks with markovian topology and impulsive effects, IEEE T. Automat. Contr., 61, 2256-2261 (2016) · Zbl 1359.93459 · doi:10.1109/TAC.2015.2484328
[31] C, Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations, Neural Process Lett., 46, 271-291 (2017) · doi:10.1007/s11063-017-9590-x
[32] Z, Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method, IEEE T. Neur. Net. Lear., 30, 1476-1485 (2019) · doi:10.1109/TNNLS.2018.2868800
[33] Z, Further study on finite-time synchronization for delayed inertial neural networks via inequality skills, Neurocomputing, 373, 15-23 (2020) · doi:10.1016/j.neucom.2019.09.034
[34] Z. Zhang, J. Cao, Finite-time synchronization for fuzzy inertial neural networks by maximum-value approach, <i>IEEE T. Fuzzy Syst.</i>, doi: <a href=“http://dx.doi.org/10.1109/TFUZZ.2021.3059953.” target=“_blank”>10.1109/TFUZZ.2021.3059953.</a>
[35] D, Finite-time synchronization of multi-coupling stochastic fuzzy neural networks with mixed delays via feedback control, Fuzzy Set. Syst., 411, 85-104 (2021) · Zbl 1467.93281 · doi:10.1016/j.fss.2020.07.015
[36] A, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE T. Automat. Contr., 57, 2106-2110 (2012) · Zbl 1369.93128 · doi:10.1109/TAC.2011.2179869
[37] R, Finite-time and fixed-time synchronization analysis of inertial memristive neural networks with time-varying delays, Cogn. Neurodynamics, 12, 121-134 (2018) · doi:10.1007/s11571-017-9455-z
[38] C, Fixed-time synchronization of inertial memristor-based neural networks with discrete delay, Neural Networks, 109, 81-89 (2019) · Zbl 1441.93278 · doi:10.1016/j.neunet.2018.10.011
[39] R, Fixed-time synchronization of quaternion-valued memristive neural networks with time delays, Neural Networks, 113, 1-10 (2019) · Zbl 1441.93285 · doi:10.1016/j.neunet.2019.01.014
[40] X, Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions, Neural Networks, 90, 42-55 (2017) · Zbl 1439.93015 · doi:10.1016/j.neunet.2017.03.006
[41] L. Duan, M. Shi, L. Huang, New results on finite-/fixed-time synchronization of delayed diffusive fuzzy HNNs with discontinuous activations, <i>Fuzzy Set. Syst.</i>, doi: <a href=“http://dx.doi.org/10.1016/j.fss.2020.04.016.” target=“_blank”>10.1016/j.fss.2020.04.016.</a> · Zbl 1467.93014
[42] L, Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinuous activations, Chaos Soliton. Fract., 142, 110386 (2021) · Zbl 1496.68284 · doi:10.1016/j.chaos.2020.110386
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.