×

An analytical study of participating policies with minimum rate guarantee and surrender option. (English) Zbl 1484.91379

Summary: We perform a detailed theoretical study of the value of a class of participating policies with four key features: (i) the policyholder is guaranteed a minimum interest rate on the policy reserve; (ii) the contract can be terminated by the holder at any time until maturity (surrender option); (iii) at the maturity (or upon surrender), a bonus is credited to the holder if the portfolio backing the policy outperforms the current policy reserve; (iv) due to solvency requirements, the contract ends if the value of the underlying portfolio of assets falls below the policy reserve.
Our analysis is probabilistic and relies on optimal stopping and free boundary theory. We find a structure of the optimal surrender strategy which was undetected by previous (mostly numerical) studies on the topic. Optimal surrender of the contract is triggered by two ‘stop-loss’ boundaries and by a ‘too-good-to-persist’ boundary (in the language of E. Ekström and J. Vaicenavicius [Stochastic Processes Appl. 130, No. 2, 806–823 (2020; Zbl 1441.60034)]. Financial implications of this strategy are discussed in detail and supported by extensive numerical experiments.

MSC:

91G05 Actuarial mathematics
62P05 Applications of statistics to actuarial sciences and financial mathematics
60G40 Stopping times; optimal stopping problems; gambling theory
35R35 Free boundary problems for PDEs

Citations:

Zbl 1441.60034

References:

[1] Andreatta, G.; Corradin, S., Valuing the surrender options embedded in a portfolio of Italian life guaranteed participating policies: a least squares Monte Carlo approach, Real Option Theory Meets Practice (2004)
[2] Bacinello, A. R., Fair valuation of a guaranteed life insurance participating contract embedding a surrender option, J. Risk Insur., 70, 461-487 (2003) · doi:10.1111/1539-6975.t01-1-00060
[3] Bacinello, A. R.; Biffis, E.; Millossovich, P., Pricing life insurance contracts with early exercise features, J. Comput. Appl. Math., 233, 27-35 (2009) · Zbl 1179.91098 · doi:10.1016/j.cam.2008.05.036
[4] Bass, R. F., Diffusions and Elliptic Operators (1998), New York: Springer, New York · Zbl 0914.60009
[5] Bayraktar, E.; Xing, H., Analysis of the optimal exercise boundary of American options for jump diffusions, SIAM J. Math. Anal., 41, 825-860 (2009) · Zbl 1188.91209 · doi:10.1137/080712519
[6] Bensoussan, A.; Lions, J. L., Applications of Variational Inequalities in Stochastic Control (1982), Amsterdam: North-Holland, Amsterdam · Zbl 0478.49002
[7] Cannon, J. R., The One-Dimensional Heat Equation (1984), Cambridge: Cambridge University Press, Cambridge · Zbl 0567.35001 · doi:10.1017/CBO9781139086967
[8] Chen, X.; Chadam, J., A mathematical analysis of the optimal exercise boundary for American put options, SIAM J. Math. Anal., 38, 1613-1641 (2007) · Zbl 1305.91227 · doi:10.1137/S0036141003437708
[9] Cheng, C.; Li, J., Early default risk and surrender risk: impacts on participating life insurance policies, Insur. Math. Econ., 78, 30-43 (2018) · Zbl 1398.91318 · doi:10.1016/j.insmatheco.2017.11.001
[10] Chu, C. C.; Kwok, Y. K., Pricing participating policies with rate guarantees, Int. J. Theor. Appl. Finance, 9, 517-532 (2006) · Zbl 1184.91110 · doi:10.1142/S0219024906003688
[11] Dai, M.; Yi, F., Finite-horizon optimal investment with transaction costs: a parabolic double obstacle problem, J. Differ. Equ., 246, 1445-1469 (2009) · Zbl 1227.35182 · doi:10.1016/j.jde.2008.11.003
[12] De Angelis, T., A note on the continuity of free-boundaries in finite-horizon optimal stopping problems for one-dimensional diffusions, SIAM J. Control Optim., 53, 167-184 (2015) · Zbl 1338.60117 · doi:10.1137/130920472
[13] De Angelis, T.; Kitapbayev, Y., On the optimal exercise boundaries of swing put options, Math. Oper. Res., 43, 252-274 (2018) · Zbl 1434.60119 · doi:10.1287/moor.2017.0862
[14] De Angelis, T.; Peskir, G., Global \(C^1\) regularity of the value function in optimal stopping problems, Ann. Appl. Probab., 30, 1007-1031 (2020) · Zbl 1472.60073 · doi:10.1214/19-AAP1517
[15] De Angelis, T.; Stabile, G., On the free boundary of an annuity purchase, Finance Stoch., 23, 97-137 (2019) · Zbl 1428.91015 · doi:10.1007/s00780-018-00379-8
[16] Du Toit, J.; Peskir, G., The trap of complacency in predicting the maximum, Ann. Appl. Probab., 35, 340-365 (2007) · Zbl 1120.60044
[17] Ekström, E.; Vaicenavicius, J., Optimal stopping of a Brownian bridge with an unknown pinning point, Stoch. Process. Appl., 130, 806-823 (2020) · Zbl 1441.60034 · doi:10.1016/j.spa.2019.03.018
[18] Fard, F. A.; Siu, T. K., Pricing participating products with Markov-modulated jump-diffusion process: an efficient numerical PIDE approach, Insur. Math. Econ., 53, 712-721 (2013) · Zbl 1290.91179 · doi:10.1016/j.insmatheco.2013.09.011
[19] Friedman, A., Partial Differential Equations of Parabolic Type (1964), Englewood Cliffs: Prentice Hall, Englewood Cliffs · Zbl 0144.34903
[20] Friedman, A., Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Funct. Anal., 18, 151-176 (1975) · Zbl 0295.35045 · doi:10.1016/0022-1236(75)90022-1
[21] Friedman, A., Variational Principles and Free-Boundary Problems (1982), New York: Wiley, New York · Zbl 0564.49002
[22] Grosen, A.; Jørgensen, P. L., Fair valuation of life insurance liabilities. The impact of interest rate guarantees, surrender options and bonus policies, Insur. Math. Econ., 26, 37-57 (2000) · Zbl 0977.62108 · doi:10.1016/S0167-6687(99)00041-4
[23] Karatzas, I.; Shreve, S., Brownian Motion and Stochastic Calculus (1991), Berlin, Heidelberg, New York: Springer, Berlin, Heidelberg, New York · Zbl 0734.60060
[24] Ladyzenskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and Quasilinear Equations of Parabolic Type (1967), Providence: Am. Math. Soc., Providence · Zbl 0164.12302
[25] Lions, P. L.; Sznitman, A. S., Stochastic differential equations with reflecting boundary conditions, Commun. Pure Appl. Math., 37, 511-537 (1984) · Zbl 0598.60060 · doi:10.1002/cpa.3160370408
[26] Nelson, D. B.; Ramaswamy, K., Simple binomial processes as diffusion approximations in financial models, Rev. Financ. Stud., 3, 393-430 (1990) · doi:10.1093/rfs/3.3.393
[27] Nolte, S.; Schneider, J. C., Don’t lapse into temptation: a behavioral explanation for policy surrender, J. Bank. Finance, 79, 12-27 (2017) · doi:10.1016/j.jbankfin.2017.02.011
[28] Peskir, G.; Shiryaev, A. N., Optimal Stopping and Free-Boundary Problems (2006), Basel: Birkhäuser, Basel · Zbl 1115.60001
[29] Protter, P. E., Stochastic Integration and Differential Equations (2004), Berlin, Heidelberg, New York: Springer, Berlin, Heidelberg, New York · Zbl 1041.60005
[30] Rogers, L. C.G.; Williams, D., Diffusions, Markov Processes and Martingales (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0977.60005 · doi:10.1017/CBO9781107590120
[31] Shanahan, B.; Fard, F. A.; van der Hoek, J., Pricing participating policies under the Meixner process and stochastic volatility, Scand. Actuar. J., 2017, 7, 559-583 (2017) · Zbl 1402.91214 · doi:10.1080/03461238.2016.1193557
[32] Siu, T. K., Fair valuation of participating policies with surrender options and regime switching, Insur. Math. Econ., 37, 533-552 (2005) · Zbl 1129.60062 · doi:10.1016/j.insmatheco.2005.05.007
[33] Stabile, G., Optimal timing of the annuity purchase: a combined stochastic control and optimal stopping problem, Int. J. Theor. Appl. Finance, 9, 151-170 (2006) · Zbl 1137.91474 · doi:10.1142/S0219024906003524
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.