×

A time-inconsistent Dynkin game: from intra-personal to inter-personal equilibria. (English) Zbl 1484.91088

Summary: This paper studies a nonzero-sum Dynkin game in discrete time under non-exponential discounting. For both players, there are two intertwined levels of game-theoretic reasoning. First, each player looks for an intra-personal equilibrium among her current and future selves, so as to resolve time inconsistency triggered by non-exponential discounting. Next, given the other player’s chosen stopping policy, each player selects a best response among her intra-personal equilibria. A resulting inter-personal equilibrium is then a Nash equilibrium between the two players, each of whom employs her best intra-personal equilibrium with respect to the other player’s stopping policy. Under appropriate conditions, we show that an inter-personal equilibrium exists, based on concrete iterative procedures along with Zorn’s lemma. To illustrate our theoretical results, we investigate a two-player real options valuation problem where two firms negotiate a deal of cooperation to initiate a project jointly. By deriving inter-personal equilibria explicitly, we find that coercive power in negotiation depends crucially on the impatience levels of the two firms.

MSC:

91A55 Games of timing
91A05 2-person games
91A07 Games with infinitely many players
03E75 Applications of set theory

References:

[1] Akakpo, N.; Lacour, C., Inhomogeneous and anisotropic conditional density estimation from dependent data, Electron. J. Stat., 5, 1618-1653 (2011) · Zbl 1271.62060
[2] Bayraktar, E.; Yao, S., On the robust Dynkin game, Ann. Appl. Probab., 27, 1702-1755 (2017) · Zbl 1371.60071
[3] Bayraktar, E.; Zhang, J.; Zhou, Z., Time consistent stopping for the mean-standard deviation problem—the discrete time case, SIAM J. Financ. Math., 10, 667-697 (2019) · Zbl 1427.91251
[4] Bayraktar, E.; Zhang, J.; Zhou, Z., Equilibrium concepts for time-inconsistent stopping problems in continuous time, Math. Finance, 31, 508-530 (2021) · Zbl 1522.91260
[5] Bismut, J. M., Sur un problème de Dynkin, Z. Wahrscheinlichkeitstheor. Verw. Geb., 39, 31-53 (1977) · Zbl 0336.60069
[6] Björk, T.; Khapko, M.; Murgoci, A., On time-inconsistent stochastic control in continuous time, Finance Stoch., 21, 331-360 (2017) · Zbl 1360.49013
[7] Björk, T.; Murgoci, A.; Zhou, X. Y., Mean-variance portfolio optimization with state-dependent risk aversion, Math. Finance, 24, 1-24 (2014) · Zbl 1285.91116
[8] Christensen, S.; Lindensjö, K., On finding equilibrium stopping times for time-inconsistent Markovian problems, SIAM J. Control Optim., 56, 4228-4255 (2018) · Zbl 1429.60043
[9] Christensen, S.; Lindensjö, K., On time-inconsistent stopping problems and mixed strategy stopping times, Stoch. Process. Appl., 130, 2886-2917 (2020) · Zbl 1435.60029
[10] Cvitanić, J.; Karatzas, I., Backward stochastic differential equations with reflection and Dynkin games, Ann. Probab., 24, 2024-2056 (1996) · Zbl 0876.60031
[11] De Angelis, T.; Ferrari, G.; Moriarty, J., Nash equilibria of threshold type for two-player nonzero-sum games of stopping, Ann. Appl. Probab., 28, 112-147 (2018) · Zbl 1390.91038
[12] Dixit, A.; Pindyck, R., Investment under Uncertainty (1994), Princeton: Princeton University Press, Princeton
[13] Dynkin, E. B., Game variant of a problem on optimal stopping, Sov. Math. Dokl., 10, 270-274 (1969) · Zbl 0186.25304
[14] Ebert, S.; Wei, W.; Zhou, X. Y., Weighted discounting—on group diversity, time-inconsistency, and consequences for investment, J. Econ. Theory, 189 (2020) · Zbl 1452.91333
[15] Ekeland, I., Lazrak, A.: Being serious about non-commitment: subgame perfect equilibrium in continuous time. Tech. rep., University of British Columbia (2006). Available at online at https://arxiv.org/abs/math/0604264
[16] Ekeland, I.; Mbodji, O.; Pirvu, T. A., Time-consistent portfolio management, SIAM J. Financ. Math., 3, 1-32 (2012) · Zbl 1257.91040
[17] Ekeland, I.; Pirvu, T. A., Investment and consumption without commitment, Math. Financ. Econ., 2, 57-86 (2008) · Zbl 1177.91123
[18] Ferenstein, E. Z.; Nowak, A. S.; Szajowski, K., On randomized stopping games, Advances in Dynamic Games, Annals of the International Society of Dynamic Games, 223-233 (2005), Boston: Birkhäuser, Boston · Zbl 1181.91022
[19] Hamadène, S., Zhang, J.: The continuous time nonzero-sum Dynkin game problem and application in game options. SIAM J. Control Optim. 48, 3659-3669 (2009/10) · Zbl 1202.91020
[20] Huang, Y. J.; Nguyen-Huu, A., Time-consistent stopping under decreasing impatience, Finance Stoch., 22, 69-95 (2018) · Zbl 1391.60086
[21] Huang, Y. J.; Nguyen-Huu, A.; Zhou, X. Y., General stopping behaviours of naïve and noncommitted sophisticated agents, with application to probability distortion, Math. Finance, 30, 310-340 (2020) · Zbl 1508.91603
[22] Huang, Y. J.; Wang, Z., Optimal equilibria for multi-dimensional time-inconsistent stopping problems, SIAM J. Control Optim., 59, 1705-1729 (2021) · Zbl 1481.60083
[23] Huang, Y. J.; Yu, X., Optimal stopping under model ambiguity: a time-consistent equilibrium approach, Math. Finance, 31, 979-1012 (2021) · Zbl 1530.91599
[24] Huang, Y. J.; Zhou, Z., The optimal equilibrium for time-inconsistent stopping problems—the discrete-time case, SIAM J. Control Optim., 57, 590-609 (2019) · Zbl 1408.49019
[25] Huang, Y. J.; Zhou, Z., Optimal equilibria for time-inconsistent stopping problems in continuous time, Math. Finance, 30, 1103-1134 (2020) · Zbl 1508.91627
[26] Kosorok, M. R., Introduction to Empirical Processes and Semiparametric Inference (2008), New York: Springer, New York · Zbl 1180.62137
[27] Laraki, R.; Solan, E., Equilibrium in two-player non-zero-sum Dynkin games in continuous time, Stochastics, 85, 997-1014 (2013) · Zbl 1284.91040
[28] Lepeltier, J. P.; Maingueneau, M. A., Le jeu de Dynkin en théorie générale sans l’hypothèse de Mokobodski, Stochastics, 13, 25-44 (1984) · Zbl 0541.60041
[29] Loewenstein, G.; Thaler, R., Anomalies: intertemporal choice, J. Econ. Perspect., 3, 181-193 (1989)
[30] McDonald, R.; Siegel, D., The value of waiting to invest, Q. J. Econ., 101, 707-727 (1986)
[31] Morimoto, H., Dynkin games and martingale methods, Stochastics, 13, 213-228 (1984) · Zbl 0569.60050
[32] Morimoto, H., Non-zero-sum discrete parameter stochastic games with stopping times, Probab. Theory Relat. Fields, 72, 155-160 (1986) · Zbl 0595.60052
[33] Nagai, H., Non-zero-sum stopping games of symmetric Markov processes, Probab. Theory Relat. Fields, 75, 487-497 (1987) · Zbl 0608.60067
[34] Neveu, J.: Discrete-Parameter Martingales, Revised edn. North-Holland Publishing Co./American Elsevier Publishing Co., Inc., Amsterdam-Oxford/New York (1975) · Zbl 0345.60026
[35] Ohtsubo, Y., A nonzero-sum extension of Dynkin’s stopping problem, Math. Oper. Res., 12, 277-296 (1987) · Zbl 0617.90102
[36] Pollak, R. A., Consistent planning, Rev. Econ. Stud., 35, 201-208 (1968)
[37] Rosenberg, D.; Solan, E.; Vieille, N., Stopping games with randomized strategies, Probab. Theory Relat. Fields, 119, 433-451 (2001) · Zbl 0988.60037
[38] Sart, M., Estimation of the transition density of a Markov chain, Ann. Inst. Henri Poincaré Probab. Stat., 50, 1028-1068 (2014) · Zbl 1298.62144
[39] Shmaya, E.; Solan, E., Two-player nonzero-sum stopping games in discrete time, Ann. Probab., 32, 2733-2764 (2004) · Zbl 1079.60045
[40] Smith, J. E.; Nau, R. F., Valuing risky projects: option pricing theory and decision analysis, Manag. Sci., 41, 795-816 (1995) · Zbl 0843.90015
[41] Strotz, R. H., Myopia and inconsistency in dynamic utility maximization, Rev. Econ. Stud., 23, 165-180 (1955)
[42] Thaler, R., Some empirical evidence on dynamic inconsistency, Econ. Lett., 8, 201-207 (1981)
[43] Touzi, N.; Vieille, N., Continuous-time Dynkin games with mixed strategies, SIAM J. Control Optim., 41, 1073-1088 (2002) · Zbl 1020.60028
[44] Yasuda, M., On a randomized strategy in Neveu’s stopping problem, Stoch. Process. Appl., 21, 159-166 (1985) · Zbl 0601.60039
[45] Yong, J., Time-inconsistent optimal control problems and the equilibrium HJB equation, Math. Control Relat. Fields, 3, 271-329 (2012) · Zbl 1251.93144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.