×

Non-homogeneous wave equation on a cone. (English) Zbl 1484.35141

Summary: The wave equation \((\partial_{tt} - c^2 \Delta_x)u(x,t)=e^{-t}f(x,t)\) in the cone \(\{(x,t): \|x\| \leq t, x \in \mathbb{R}^d, t \in \mathbb{R}_+\}\) is shown to have a unique solution if \(u\) and its partial derivatives in \(x\) are in \(L^2(e^{-t})\) on the cone, and the solution can be explicit given in the Fourier series of orthogonal polynomials on the cone. This provides a particular solution for the boundary value problems of the non-homogeneous wave equation on the cone, which can be combined with a solution to the homogeneous wave equation in the cone to obtain the full solution.

MSC:

35C10 Series solutions to PDEs
33C50 Orthogonal polynomials and functions in several variables expressible in terms of special functions in one variable
35L05 Wave equation
35L20 Initial-boundary value problems for second-order hyperbolic equations
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)

Software:

DLMF

References:

[1] Xu, Y., Fourier series in orthogonal polynomials on a cone of revolution, J Fourier Anal Appl, 26 (2020) · Zbl 1530.42051 · doi:10.1007/s00041-020-09741-x
[2] Xu, Y., Sobolev orthogonal polynomials defined via gradient on the unit ball, J Approx Theory, 152, 52-65 (2008) · Zbl 1197.42016 · doi:10.1016/j.jat.2007.11.001
[3] Atkinson, K.; Chien, D.; Hansen, O., A spectral method for elliptic equations: the Dirichlet problem, Adv Comput Math, 33, 169-189 (2010) · Zbl 1196.65177 · doi:10.1007/s10444-009-9125-8
[4] Atkinson, K.; Chien, D.; Hansen, O., A spectral method for elliptic equations: the Neumann problem, Adv Comput Math, 34, 295-317 (2011) · Zbl 1211.65158 · doi:10.1007/s10444-010-9154-3
[5] Boyd, JP; Yu, F., Comparing seven spectral methods for interpolation and for solving the poisson equation in a disk: Zernike polynomials, Logan-Shepp ridge polynomials, Chebyshev-Fourier series, cylindrical Robert functions, Bessel-Fourier expansions, square-to-disk conformal mapping and radial basis functions, J Comput Phys, 230, 1408-1438 (2011) · Zbl 1210.65192 · doi:10.1016/j.jcp.2010.11.011
[6] Li, H.; Xu, Y., Spectral approximation on the unit ball, SIAM J Numer Anal, 52, 2647-2675 (2014) · Zbl 1315.41002 · doi:10.1137/130940591
[7] Vasil, GM; Burns, KJ; Lecoanet, D., Tensor calculus in polar coordinates using Jacobi polynomials, J Comput Phys, 325, 53-73 (2016) · Zbl 1380.65392 · doi:10.1016/j.jcp.2016.08.013
[8] Bérenger, J-P., A perfectly matched layer for the absorption of electromagnetic waves, J Comput Phys, 114, 185-200 (1994) · Zbl 0814.65129 · doi:10.1006/jcph.1994.1159
[9] Zenginolu, A., Hyperboloidal layers for hyperbolic equations on unbounded geometries, J Comput Phys, 230, 2286-2302 (2011) · Zbl 1210.65178 · doi:10.1016/j.jcp.2010.12.016
[10] Givoli, D., High-order local non-reflecting boundary conditions: a review, Wave Motion, 39, 319-326 (2004) · Zbl 1163.74356 · doi:10.1016/j.wavemoti.2003.12.004
[11] Hagstrom, T.; Lau, S., Radiation boundary conditions for Maxwell’s equations: a review of accurate time-domain formulations, J Comput Math, 25, 305-336 (2007)
[12] Szeftel, J., A nonlinear approach to absorbing boundary conditions for the semilinear wave equation, Math Comput, 75, 565-594 (2006) · Zbl 1092.35065 · doi:10.1090/S0025-5718-06-01820-5
[13] Slevinsky, RM., On the use of Hahn’s asymptotic formula and stabilized recurrence for a fast, simple, and stable Chebyshev-Jacobi transform, IMA J Numer Anal, 38, 102-124 (2018) · Zbl 1477.65275 · doi:10.1093/imanum/drw070
[14] Szegö, G., Orthogonal polynomials (1975), Amer. Math. Soc. · JFM 61.0386.03
[15] Townsend, A.; Webb, M.; Olver, S., Fast polynomial transforms based on Toeplitz and Hankel matrices, Maths Comp, 87, 1913-1934 (2018) · Zbl 1478.65147 · doi:10.1090/mcom/3277
[16] Deconinck, B.; Trogdon, T.; Vasan, V., The method of Fokas for solving linear partial differential equations, SIAM Rev, 56, 159-186 (2014) · Zbl 1295.35002 · doi:10.1137/110821871
[17] Fokas, AS, Pelloni, B, editors. Unified transform for boundary value problems: applications and advances. Society for Industrial and Applied Mathematics; 2014. · Zbl 1311.65001
[18] Deconinck, B.; Guo, Q.; Shlizerman, E., Fokas’s unified transform method for linear systems, Quart Appl Math, 76, 463-488 (2018) · Zbl 1407.35004 · doi:10.1090/qam/1484
[19] Dunkl, CF, Xu, Y.Orthogonal polynomials of several variables. Cambridge: Cambridge University Press; 2014. (Encyclopedia of Mathematics and its Applications, Vol. 155). · Zbl 1317.33001
[20] Olver, FWJ, Olde Daalhuis, AB, Lozier, DW, et al., editors. NIST digital library of mathematical functions. Available from: http://dlmf.nist.gov/, Release 1.0.22 of 2019-03-15.
[21] Slevinsky, RM.Conquering the pre-computation in two-dimensional harmonic polynomial transforms, arXiv:1711.07866.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.