×

Traveling wave solutions of conformable time fractional Burgers type equations. (English) Zbl 1484.35116

Summary: In this paper, we investigate the conformable time fractional Burgers type equations. First, we construct the explicit solutions of Riccati equation by means of modified tanh function method and modified extended exp-function method respectively. In addition, based on the formulas obtained above, the traveling wave solutions of conformable time fractional Burgers equation and (2+1)-dimensional generalized conformable time fractional Burgers equations are established applying functional separation variables method. Furthermore, the three-dimensional diagrams of the obtained exact solutions are presented for the purpose of visualization.

MSC:

35C07 Traveling wave solutions
26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] R, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27, 201-210 (1983) · Zbl 0515.76012 · doi:10.1122/1.549724
[2] S. G. Samko, A. A. Kilbas, O. I. Marichev, <i>Fractional Integrals and Derivatives: Theory and Applications</i>, Gordon and Breach Science Publishers, 1993. · Zbl 0818.26003
[3] L, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54, 3413-3442 (2003) · Zbl 1036.26004
[4] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, <i>Fractional Calculus Models and Numerical Methods</i>, Boston (MA): World Scientific, 2012. · Zbl 1248.26011
[5] A. Kilbas, H. M. Srivastava, J. J. Trujillo, <i>Theory and Applications of Fractional Differential Equations</i>, North-Holland, 2006. · Zbl 1092.45003
[6] Y, Lie symmetry analysis for the space-time fractional porous medium equations, J. Northwest Univ., 50, 88-92 (2020) · Zbl 1449.35017
[7] Y. Yang, L. Z. Wang, Lie symmetry analysis, conservation laws and separation variable type solutions of the time-fractional porous medium equation, <i>Waves Random Complex Media</i>, (2020), 1-20. Available from: <a href=“https://doi.org/10.1080/17455030.2020.1810358” target=“_blank”>https://doi.org/10.1080/17455030.2020.1810358</a>.
[8] J, Applications of invariant subspace method in the space-time fractional partial differential equations, J. Northwest Univ., 50, 84-87+92 (2020) · Zbl 1449.35012
[9] X. Y. Cheng, L. Z. Wang, J. Hou, Solving time fractional Keller-Segel type diffusion equations with symmetry analysis, power series method, invariant subspace method and q-homotopy analysis method, unpublished work. · Zbl 1540.35017
[10] X, Lie symmetry analysis, invariant subspace method and q-homotopy analysis method for solving fractional system of single-walled carbon nanotube, Comput. Appl. Math., 40, 1-17 (2021) · Zbl 1461.65043 · doi:10.1007/s40314-020-01383-5
[11] R, A new definition of fractional derivative, J. Comput. Appl. Math., 264, 65-70 (2014) · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002
[12] T, On conformable fractional calculus, J. Comput. Appl. Math., 279, 57-66 (2015) · Zbl 1304.26004 · doi:10.1016/j.cam.2014.10.016
[13] D, General conformable fractional derivative and its physical interpretation, Calcolo, 54, 1-15 (2017) · Zbl 1372.65022 · doi:10.1007/s10092-016-0173-4
[14] K, New exact solutions of the conformable time-fractional Cahn-Allen and Cahn-Hilliard equations using the modified Kudryashov method, Optik, 132, 203-209 (2017) · doi:10.1016/j.ijleo.2016.12.032
[15] F, Oblique closed form solutions of some important fractional evolution equations via the modified Kudryashov method arising in physical problems, J. Ocean Eng. Sci., 3, 244-252 (2018) · doi:10.1016/j.joes.2018.08.005
[16] S, Oblique resonance wave phenomena for nonlinear coupled evolution equations with fractional temporal evolution, Eur. Phys. J. Plus, 134, 473 (2019) · doi:10.1140/epjp/i2019-12832-6
[17] S, Bifurcation analysis with chaotic motion of oblique plane wave for describing a discrete nonlinear electrical transmission line with conformable derivative, Results Phys., 18, 103309 (2020) · doi:10.1016/j.rinp.2020.103309
[18] M, The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative, Opt. Quantum. Electron., 49, 391 (2017) · doi:10.1007/s11082-017-1224-z
[19] X. L. Wang, L. Z. Wang, Traveling wave solutions of conformable space-time fractional coupled BWBK equations and conformable space-time fractional MEW equation, unpublished work.
[20] A, Auxiliary equation method for time-fractional differential equations with conformable derivative, Comput. Math. Appl., 75, 876-882 (2018) · Zbl 1409.35208 · doi:10.1016/j.camwa.2017.10.016
[21] M, Oblique plane waves with bifurcation behaviors and chaotic motion for resonant nonlinear Schrodinger equations having fractional temporal evolution, Results Phys., 15, 102778 (2019) · doi:10.1016/j.rinp.2019.102778
[22] S, Resonance nonlinear wave phenomena with obliqueness and fractional time evolution via the novel auxiliary ordinary differential equation method, SN Appl. Sci., 1, 1-13 (2019)
[23] F, Nonlinear time fractional Korteweg-de Vries equations for the interaction of wave phenomena in fluid-filled elastic tubes, Eur. Phys. J. Plus, 133, 384 (2018) · doi:10.1140/epjp/i2018-12195-6
[24] F, Obliquely propagating wave solutions to conformable time fractional extended Zakharov-Kuzetsov equation via the generalized \(\exp(\Phi(\xi))\)-expansion method, SeMA, 76, 109-122 (2019) · Zbl 1421.35047 · doi:10.1007/s40324-018-0164-2
[25] F, Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized \(\exp(-\Phi(\xi))\)-expansion, Optik, 178, 439-448 (2019) · doi:10.1016/j.ijleo.2018.10.016
[26] W, Functional separation of variables for Laplace equations in two dimensions, J. Phys. A, 26, 1901 (1993) · Zbl 0807.58045 · doi:10.1088/0305-4470/26/8/017
[27] E, Evolution equations, invariant surface conditions and functional separation of variables, Physica D, 139, 28-47 (2000) · Zbl 0989.35011 · doi:10.1016/S0167-2789(99)00224-9
[28] C, Group foliation method and functional separation of variables to nonlinear diffusion equations, Chin. Phys. Lett., 22, 1563 (2005) · doi:10.1088/0256-307X/22/7/001
[29] A, Functional separation of variables in nonlinear PDEs: General approach, new solutions of diffusion-type equations, Mathematics, 8, 90 (2020) · doi:10.3390/math8101793
[30] S, New abundant wave solutions of the conformable space-time fractional (4+1)-dimensional Fokas equation in water waves, Comput. Math. Appl., 78, 2094-2106 (2019) · Zbl 1442.35507 · doi:10.1016/j.camwa.2019.03.050
[31] X. L. Wang, L. Z. Wang, Exact solutions of three classes of conformable time-fractional differential equations, unpublished work.
[32] J, On Burgers’ model equations for turbulence, J. Fluid Mech., 59, 263-279 (1973) · Zbl 0267.76035 · doi:10.1017/S0022112073001564
[33] Z, Singularity structure analysis and abundant new dromion-like structures for the (2+1)-dimensional generalized Burgers equation, Chin. J. Phys., 40, 203-213 (2002) · Zbl 07844910
[34] K, Painlevé analysis and some solutions of (2+1)-dimensional generalized Burgers equations, Commun. Theor. Phys., 39, 393 (2003) · doi:10.1088/0253-6102/39/4/393
[35] A, On the solution of Burgers’ equation with the new fractional derivative, Open Phys, 13, 355-360 (2015)
[36] Y, New exact solutions of Burgers’ type equations with conformable derivative, Waves Random Complex Media, 27, 103-116 (2017) · Zbl 1375.35595 · doi:10.1080/17455030.2016.1205237
[37] M, Closed-form travelling wave solutions to the nonlinear space-time fractional coupled Burgers’ equation, Arab. J. Basic. Appl. Sci., 26, 1-11 (2019) · doi:10.1080/25765299.2018.1523702
[38] A. D. Polyaninn, V. F. Zaitsev, <i>Handbook of Nonlinear Partial Differential Equations</i>, Chapman and Hall/CRC, 2003. · Zbl 1015.34001
[39] H, Expanding the tanh-function method for solving nonlinear equations, Appl. Math., 2, 1096-1104 (2011) · doi:10.4236/am.2011.29151
[40] M, Modified extended exp-function method for system of nonlinear partial differential equations defined by seismic sea waves, Pramana J. Phys., 91, 28 (2018) · doi:10.1007/s12043-018-1601-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.