×

Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. (English) Zbl 1484.35047

Summary: Resorting to M.G. Crandall and P.H. Rabinowitz’s well-known bifurcation theory we first obtain the local structure of steady states concerning the ratio-dependent predator-prey system with prey-taxis in spatial one dimension, which bifurcate from the homogeneous coexistence steady states when treating the prey-tactic coefficient as a bifurcation parameter. Based on this, then the global structure of positive solution is established. Moreover, through asymptotic analysis and eigenvalue perturbation we find the stability criterion of such bifurcating steady states. Finally, several numerical simulations are performed to show the pattern formation.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B09 Positive solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
92C15 Developmental biology, pattern formation
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] B. Ainseba; M. Bendahmane; A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Analysis: Real World Applications, 9, 2086-2105 (2008) · Zbl 1156.35404 · doi:10.1016/j.nonrwa.2007.06.017
[2] H. R. Akcakaya; R. Arditi; L. R. Ginzburg, Ratio-dependent predation: An abstraction that works, Ecology, 76, 995-1004 (1995) · doi:10.2307/1939362
[3] R. Arditi; L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, Journal of Theoretical Biology, 139, 311-326 (1989)
[4] R. Arditi; L. R. Ginzburg; H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent predation models, The American Naturalist, 138, 1287-1296 (1991)
[5] J. Blat; K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM Journal on Mathematical Analysis, 17, 1339-1353 (1986) · Zbl 0613.35008 · doi:10.1137/0517094
[6] Y. Cai, Q. Cao and Z.-A. Wang, Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis, Applicable Analysis, 2020, 1-19.
[7] A. Chakraborty; M. Singh; D. Lucy; P. Ridland, Predator-prey model with prey-taxis and diffusion, Mathematical and Computer Modelling, 46, 482-498 (2007) · Zbl 1132.35395 · doi:10.1016/j.mcm.2006.10.010
[8] C. Cosner; D. L. DeAngelis; J. S. Ault; D. B. Olson, Effects of spatial grouping on the functional response of predators, Theoretical Population Biology, 56, 65-75 (1999) · Zbl 0928.92031
[9] M. G. Crandall; P. H. Rabinowitz, Bifurcation from simple eigenvalues, Journal of Functional Analysis, 8, 321-340 (1971) · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[10] M. G. Crandall; P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Archive for Rational Mechanics and Analysis, 52, 161-180 (1973) · Zbl 0275.47044 · doi:10.1007/BF00282325
[11] D. Grünbaum, Using spatially explicit models to characterize foraging performance in heterogeneous landscapes, The American Naturalist, 151, 97-113 (1998) · doi:10.1086/286105
[12] X. He; S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Applied Mathematics Letters, 49, 73-77 (2015) · Zbl 1381.35188 · doi:10.1016/j.aml.2015.04.017
[13] M. Hui Wang; Mark Kot, Speeds of invasion in a model with strong or weak Allee effects, Mathematical Biosciences, 171, 83-97 (2001) · Zbl 0978.92033 · doi:10.1016/S0025-5564(01)00048-7
[14] J. Jang; W.-M. Ni; M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, Journal of Dynamics and Differential Equations, 16, 297-320 (2004) · Zbl 1072.35091 · doi:10.1007/s10884-004-2782-x
[15] H.-Y. Jin; Z.-A. Wang, Global stability of prey-taxis systems, Journal of Differential Equations, 262, 1257-1290 (2017) · Zbl 1364.35143 · doi:10.1016/j.jde.2016.10.010
[16] H.-Y. Jin and Z.-A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, European Journal of Applied Mathematics, (2020).
[17] P. Kareiva; G. Odell, Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search, The American Naturalist, 130, 233-270 (1987) · doi:10.1086/284707
[18] J. M. Lee; T. Hillen; M. A. Lewis, Continuous traveling waves for prey-taxis, Bulletin of Mathematical Biology, 70, 654-676 (2008) · Zbl 1142.92043 · doi:10.1007/s11538-007-9271-4
[19] J. M. Lee; T. Hillen; M. A. Lewis, Pattern formation in prey-taxis systems, Journal of Biological Dynamics, 3, 551-573 (2009) · Zbl 1315.92064 · doi:10.1080/17513750802716112
[20] C. Li; X. Wang; Y. Shao, Steady states of a predator-prey model with prey-taxis, Nonlinear Analysis: Theory, Methods & Applications, 97, 155-168 (2014) · Zbl 1287.35018 · doi:10.1016/j.na.2013.11.022
[21] M. Ma; C. Ou; Z.-A. Wang, Stationary solutions of a volume-filling chemotaxis model with logistic growth and their stability, SIAM Journal on Applied Mathematics, 72, 740-766 (2012) · Zbl 1259.35031 · doi:10.1137/110843964
[22] M. Ma; Z.-A. Wang, Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect, Nonlinearity, 28, 2639-2660 (2015) · Zbl 1331.35185 · doi:10.1088/0951-7715/28/8/2639
[23] W. W. Murdoch; J. Chesson; P. L. Chesson, Biological control in theory and practice, The American Naturalist, 125, 344-366 (1985) · doi:10.1086/284347
[24] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, Journal of Functional Analysis, 7, 487-513 (1971) · Zbl 0212.16504 · doi:10.1016/0022-1236(71)90030-9
[25] M. L. Rosenzweig; R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, The American Naturalist, 97, 209-223 (1963) · doi:10.1086/282272
[26] N. Sapoukhina; Y. Tyutyunov; R. Arditi, The role of prey taxis in biological control: A spatial theoretical model, The American Naturalist, 162, 61-76 (2003) · doi:10.1086/375297
[27] J. Shi; X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, Journal of Differential Equations, 246, 2788-2812 (2009) · Zbl 1165.35358 · doi:10.1016/j.jde.2008.09.009
[28] Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Analysis: Real World Applications, 11, 2056-2064 (2010) · Zbl 1195.35171 · doi:10.1016/j.nonrwa.2009.05.005
[29] Q. Wang; Y. Song; L. Shao, Nonconstant positive steady states and pattern formation of 1-D prey-taxis systems, Journal of Nonlinear Science, 27, 71-97 (2017) · Zbl 1368.92160 · doi:10.1007/s00332-016-9326-5
[30] X. Wang; W. Wang; G. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Mathematical Methods in the Applied Sciences, 38, 431-443 (2015) · Zbl 1307.92333 · doi:10.1002/mma.3079
[31] S. Wu; J. Shi; B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, Journal of Differential Equations, 260, 5847-5874 (2016) · Zbl 1335.35131 · doi:10.1016/j.jde.2015.12.024
[32] K. Yosida, Functional Analysis, 4th edition, Springer, Berlin, Heidelberg, 1974. · Zbl 0286.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.