×

Hypergeometric Euler numbers. (English) Zbl 1484.11077

Summary: In this paper, we introduce the hypergeometric Euler number as an analogue of the hypergeometric Bernoulli number and the hypergeometric Cauchy number. We study several expressions and sums of products of hypergeometric Euler numbers. We also introduce complementary hypergeometric Euler numbers and give some characteristic properties. There are strong reasons why these hypergeometric numbers are important. The hypergeometric numbers have one of the advantages that yield the natural extensions of determinant expressions of the numbers, though many kinds of generalizations of the Euler numbers have been considered by many authors.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
11C20 Matrices, determinants in number theory
33C20 Generalized hypergeometric series, \({}_pF_q\)

Software:

OEIS

References:

[1] T. M. Apostol, i>On the Lerch Zeta function</i, Pacific. J. Math, 1, 161-167 (1951) · Zbl 0043.07103 · doi:10.2140/pjm.1951.1.161
[2] Y. Ohno, Y. Sasaki, <i>On the parity of poly-Euler numbers</i>, RIMS Kokyuroku Bessatsu, B32 (2012), 271-278. · Zbl 1334.11014
[3] Y. Ohno, Y. Sasaki, <i>Periodicity on poly-Euler numbers and Vandiver type congruence for Euler</i> <i>numbers</i>, RIMS Kokyuroku Bessatsu, B44 (2013), 205-211. · Zbl 1361.11013
[4] Y. Ohno; Y. Sasaki, i>On poly-Euler numbers</i, J. Aust. Math. Soc., 103, 126-144 (2017) · Zbl 1403.11016 · doi:10.1017/S1446788716000495
[5] R. B. Corcino; H. Jolany; C. B. Corcino, t al., <i>On generalized multi poly-Euler polynomials</i, Fibonacci Quart., 55, 41-53 (2017) · Zbl 1401.11056
[6] T. Komatsu, J. L. Ramírez, V. Sirvent, <i>A</i> (<i>p</i>, <i>q</i>)<i>-analogue of poly-Euler polynomials and some</i> <i>related polynomials</i>, Ukrainian Math. J., arXiv:1604.03787.
[7] A. Adelberg; S. F. Hong; W. L. Ren, i>Bounds of divided universal Bernoulli numbers and universal</i> <i>Kummer congruences</i, Proc. Amer. Math. Soc, 136, 61-71 (2008) · Zbl 1126.11001 · doi:10.1090/S0002-9939-07-09025-9
[8] S. F. Hong; J. R. Zhao; W. Zhao, i>The universal Kummer congruences</i, J. Aust. Math. Soc., 94, 106-132 (2013) · Zbl 1355.11017 · doi:10.1017/S1446788712000493
[9] A. Hassen; H. D. Nguyen, i>Hypergeometric Bernoulli polynomials and Appell sequences</i, Int. J. Number Theory, 4, 767-774 (2008) · Zbl 1204.11049 · doi:10.1142/S1793042108001754
[10] A. Hassen; H. D. Nguyen, i>Hypergeometric zeta functions</i, Int. J. Number Theory, 6, 99-126 (2010) · Zbl 1245.11098 · doi:10.1142/S179304211000282X
[11] K. Kamano, i>Sums of products of hypergeometric Bernoulli numbers</i, J. Number Theory, 130, 2259-2271 (2010) · Zbl 1261.11021 · doi:10.1016/j.jnt.2010.04.005
[12] T. Komatsu, i>Hypergeometric Cauchy numbers</i, Int. J. Number Theory, 9, 545-560 (2013) · Zbl 1301.11030 · doi:10.1142/S1793042112501473
[13] T. Komatsu; F. Luca; C. de J. Pita Ruiz V., i>Generalized poly-Cauchy polynomials and their</i> <i>interpolating functions</i, Colloq. Math., 136, 13-30 (2014) · Zbl 1320.11016 · doi:10.4064/cm136-1-2
[14] T. Komatsu; C. de J. Pita Ruiz V., i>Truncated Euler polynomials</i, Math. Slovaca, 68, 52-7 (2018)
[15] T. Komatsu, i>Complementary Euler numbers</i, Period. Math. Hungar., 75, 302-314 (2017) · Zbl 1413.11126 · doi:10.1007/s10998-017-0199-7
[16] J. W. L. Glaisher, i>Expressions for Laplace’s coefficients, Bernoullian and Eulerian numbers etc. as</i> <i>determinants</i, Messenger, 6, 49-63 (1875) · JFM 08.0306.01
[17] M. Aoki, T. Komatsu, G. K. Panda, <i>Several properties of hypergeometric Bernoulli numbers</i>, J. Inequal. Appl. 2019, Paper No. 113, 24. · Zbl 1498.11071
[18] M. Aoki, T. Komatsu, <i>Remarks on hypergeometric Cauchy numbers</i>, Math. Rep. (Bucur.) (to appear). arXiv:1802.05455.
[19] O. TeichmÜller, i>Differentialrechung bei Charakteristik p</i, J. Reine Angew. Math., 175, 89-99 (1936) · JFM 62.0114.01
[20] R. Gottfert, H. Niederreiter, <i>Hasse-Teichmüller derivatives and products of linear recurring</i> <i>sequences</i>, Finite · Zbl 0808.11072
[21] H. Hasse, i>Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit</i> <i>Vollkommenem Konstantenkörper bei beliebiger Charakteristik</i, J. Reine Angew. Math., 175, 50-54 (1936) · JFM 62.0113.01
[22] N. J. A. Sloane, <i>On-Line Encyclopedia of Integer Sequences</i>, available from http://oeis.org. · Zbl 1044.11108
[23] S. Koumandos; H. Laurberg Pedersen, i>Turán type inequalities for the partial sums of the generating</i> <i>functions of Bernoulli and Euler numbers</i, Math. Nachr., 285, 2129-2156 (2012) · Zbl 1272.11038 · doi:10.1002/mana.201100299
[24] T. Komatsu; J. L. Ramírez, i>Some determinants involving incomplete Fubini numbers</i, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat, 26 (2018) · Zbl 1438.11062
[25] N. Trudi, <i>Intorno ad alcune formole di sviluppo</i>, Rendic. dell’ Accad. Napoli., (1862), 135-143.
[26] T. Muir, <i>The theory of determinants in the historical order of development</i>, Four volumes, Dover Publications, New York, 1960.
[27] F. Brioschi, <i>Sulle funzioni Bernoulliane ed Euleriane</i>, Rivista Bibliografica, (2011), 51-117.
[28] T. Komatsu; V. Laohakosol; P. Tangsupphathawat, i>Truncated Euler-Carlitz numbers</i, Hokkaido Math. J., 48, 569-588 (2019) · Zbl 1448.11205 · doi:10.14492/hokmj/1573722018
[29] T. Komatsu, W. Zhang, <i>Several properties of multiple hypergeometric Euler numbers</i>, Tokyo J. Math. (advance publication). https://projecteuclid.org/euclid.tjm/1552013762. · Zbl 1436.11026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.