×

The influence of fear effect to the Lotka-Volterra predator-prey system with predator has other food resource. (English) Zbl 1482.92087

Summary: A Lotka-Volterra predator-prey system incorporating fear effect of the prey and the predator has other food resource is proposed and studied in this paper. It is shown that the trivial equilibrium and the predator free equilibrium are both unstable, and depending on some inequalities, the system may have a globally asymptotically stable prey free equilibrium or positive equilibrium. Our study shows the fear effect is one of the most important factors that lead to the extinction of the prey species. Such a finding is quite different from the known result. Numeric simulations are carried out to show the feasibility of the main results.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
37N25 Dynamical systems in biology

References:

[1] Wang, X.; Zanette, L.; Zou, X., Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73, 5, 1179-1204 (2016) · Zbl 1358.34058 · doi:10.1007/s00285-016-0989-1
[2] Wang, X.; Zou, X., Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators, Bull. Math. Biol., 79, 6, 1325-1359 (2017) · Zbl 1372.92095 · doi:10.1007/s11538-017-0287-0
[3] Xiao, Z. W.; Li, Z., Stability analysis of a mutual interference predator-prey model with the fear effect, J. Appl. Sci. Eng., 22, 2, 205-211 (2019)
[4] Kundu, K.; Pal, S.; Samanta, S., Impact of fear effect in a discrete-time predator-prey system, Bull. Calcutta Math. Soc., 110, 3, 245-264 (2019)
[5] Sasmal, S. K., Population dynamics with multiple Allee effects induced by fear factors—a mathematical study on prey-predator interactions, Appl. Math. Model., 64, 1-14 (2018) · Zbl 1480.92180 · doi:10.1016/j.apm.2018.07.021
[6] Chen, F. D.; Chen, W. L., Permanence of a stage-structured predator-prey system, Appl. Math. Comput., 219, 17, 8856-8862 (2013) · Zbl 1288.92016
[7] Chen, F. D.; Xie, X. D., Partial survival and extinction of a delayed predator-prey model with stage structure, Appl. Math. Comput., 219, 8, 4157-4162 (2012) · Zbl 1311.92154
[8] Chen, F. D.; Wang, H. N.; Lin, Y. H.; Chen, W. L., Global stability of a stage-structured predator-prey system, Appl. Math. Comput., 223, 45-53 (2013) · Zbl 1329.92101
[9] Chen, F.; Ma, Z.; Zhang, H., Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges, Nonlinear Anal., Real World Appl., 13, 6, 2790-2793 (2012) · Zbl 1254.92073 · doi:10.1016/j.nonrwa.2012.04.006
[10] Chen, F.; Wu, Y.; Ma, Z., Stability property for the predator-free equilibrium point of predator-prey systems with a class of functional response and prey refuges, Discrete Dyn. Nat. Soc., 2012 (2012) · Zbl 1250.34036
[11] Yu, S., Global stability of a modified Leslie-Gower model with Beddington-DeAngelis functional response, Adv. Differ. Equ., 2014 (2014) · Zbl 1343.34137 · doi:10.1186/1687-1847-2014-84
[12] Yu, S.; Chen, F., Almost periodic solution of a modified Leslie-Gower predator-prey model with Holling-type II schemes and mutual interference, Int. J. Biomath., 7, 3 (2014) · Zbl 1305.34081 · doi:10.1142/S1793524514500284
[13] Li, Z.; Han, M. A., Global stability of stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes, Int. J. Biomath., 6, 1 (2012) · Zbl 1297.92066 · doi:10.1142/S179352451250057X
[14] Li, Z.; Han, M., Global stability of a predator-prey system with stage structure and mutual interference, Discrete Contin. Dyn. Syst., Ser. B, 19, 1, 173-187 (2014) · Zbl 1287.34071
[15] Lin, X.; Xie, X., Convergences of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes, Adv. Differ. Equ., 2016 (2016) · Zbl 1419.34158 · doi:10.1186/s13662-016-0887-2
[16] Xiao, Z.; Li, Z.; Zhu, Z., Hopf bifurcation and stability in a Beddington-DeAngelis predator-prey model with stage structure for predator and time delay incorporating prey refuge, Open Math., 17, 1, 141-159 (2019) · Zbl 1427.34114 · doi:10.1515/math-2019-0014
[17] Yue, Q., Permanence of a delayed biological system with stage structure and density-dependent juvenile birth rate, Eng. Lett., 27, 2, 1-5 (2019)
[18] Xie, X.; Xue, Y., Permanence and global attractivity of a nonautonomous modified Leslie-Gower predator-prey model with Holling-type II schemes and a prey refuge, Adv. Differ. Equ., 2016 (2016) · Zbl 1419.34160 · doi:10.1186/s13662-016-0892-5
[19] Deng, H.; Chen, F.; Zhu, Z., Dynamic behaviors of Lotka-Volterra predator-prey model incorporating predator cannibalism, Adv. Differ. Equ., 2019 (2019) · Zbl 1485.92084 · doi:10.1186/s13662-019-2289-8
[20] Chen, L.; Wang, Y., Influence of predator mutual interference and prey refuge on Lotka-Volterra predator-prey dynamics, Commun. Nonlinear Sci. Numer. Simul., 18, 11, 3174-3180 (2013) · Zbl 1329.92102 · doi:10.1016/j.cnsns.2013.04.004
[21] Chen, F. D.; Lin, Q. X.; Xie, X. D., Dynamic behaviors of a nonautonomous modified Leslie-Gower predator-prey model with Holling-type III schemes and a prey refuge, J. Math. Comput. Sci., 2017, 266-277 (2017) · Zbl 1427.92071 · doi:10.22436/jmcs.017.02.08
[22] Chen, F.; Guan, X.; Huang, X., Dynamic behaviors of a Lotka-Volterra type predator-prey system with Allee effect on the predator species and density dependent birth rate on the prey species, Open Math., 17, 1, 1186-1202 (2019) · Zbl 1513.34321 · doi:10.1515/math-2019-0082
[23] Ma, Z.; Chen, F.; Wu, C., Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference, Appl. Math. Comput., 219, 15, 7945-7953 (2013) · Zbl 1293.34062
[24] Chen, F.; Ma, Z.; Zhang, H., Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges, Nonlinear Anal., Real World Appl., 13, 6, 2790-2793 (2012) · Zbl 1254.92073 · doi:10.1016/j.nonrwa.2012.04.006
[25] Chen, B., The influence of commensalism on a Lotka-Volterra commensal symbiosis model with Michaelis-Menten type harvesting, Adv. Differ. Equ., 2019 (2019) · Zbl 1458.37094 · doi:10.1186/s13662-019-1989-4
[26] Wu, R.; Li, L.; Zhou, X., A commensal symbiosis model with Holling type functional response, J. Math. Comput. Sci., 16, 3, 364-371 (2016) · doi:10.22436/jmcs.016.03.06
[27] Yang, K.; Miao, Z. S., Influence of single feedback control variable on an autonomous Holling-II type cooperative system, J. Math. Anal. Appl., 435, 1, 874-888 (2016) · Zbl 1334.34108 · doi:10.1016/j.jmaa.2015.10.061
[28] Lei, C., Dynamic behaviors of a nonselective harvesting May cooperative system incorporating partial closure for the populations, Commun. Math. Biol. Neurosci., 2018 (2018)
[29] Xiao, A.; Lei, C., Dynamic behaviors of a nonselective harvesting single species stage-structured system incorporating partial closure for the populations, Adv. Differ. Equ., 2018 (2018) · Zbl 1446.37096 · doi:10.1186/s13662-018-1709-5
[30] Chen, B., Dynamic behaviors of a nonselective harvesting Lotka-Volterra amensalism model incorporating partial closure for the populations, Adv. Differ. Equ., 2018 (2018) · Zbl 1445.92235 · doi:10.1186/s13662-018-1555-5
[31] Lin, Q., Dynamic behaviors of a commensal symbiosis model with nonmonotonic functional response and nonselective harvesting in a partial closure, Commun. Math. Biol. Neurosci., 2018 (2018)
[32] Wu, R., A two species amensalism model with non-monotonic functional response, Commun. Math. Biol. Neurosci., 2016 (2016)
[33] Wu, R.; Zhao, L.; Lin, Q. X., Stability analysis of a two species amensalism model with Holling II functional response and a cover for the first species, J. Nonlinear Funct. Anal., 2016 (2016)
[34] Zhou, Y. C.; Jin, Z.; Qin, J. L., Ordinary Differential Equation and Its Application (2003), Beijing: Science Press, Beijing
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.