×

Persistence and extinction for stochastic delay differential model of prey predator system with hunting cooperation in predators. (English) Zbl 1482.92077

Summary: Stochastic differential models provide an additional degree of realism compared to their corresponding deterministic counterparts because of the randomness and stochasticity of real life. In this work, we study the dynamics of a stochastic delay differential model for prey-predator system with hunting cooperation in predators. Existence and uniqueness of global positive solution and stochastically ultimate boundedness are investigated. Some sufficient conditions for persistence and extinction, using Lyapunov functional, are obtained. Illustrative examples and numerical simulations, using Milstein’s scheme, are carried out to validate our analytical findings. It is observed that a small scale of white noise can promote the survival of both species; while large noises can lead to extinction of the predator population.

MSC:

92D25 Population dynamics (general)
34K20 Stability theory of functional-differential equations
92D40 Ecology
34F05 Ordinary differential equations and systems with randomness

References:

[1] Cushing, J. M.; Levin, S., Structured population dynamics, Frontiers in Mathematical Biology (1994), Berlin: Springer, Berlin · Zbl 0925.92105
[2] Gopalsamy, K., Stability and Oscillations in Delay Differential Equations of Population Dynamics (1992), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0752.34039
[3] Kuang, Y., Delay Differential Equations: With Applications in Population Dynamics (1993), San Diego: Academic Press, San Diego · Zbl 0777.34002
[4] Lotka, A., Elements of Physical Biology (1924), Baltimore: Williams & Wilkins, Baltimore · JFM 51.0416.06
[5] Volterra, V.; Scudo, F. M.; Ziegler, J. R., Variations and fluctuations in the numbers of co-existing animal species, The Golden Age of Theoretical Ecology: 1923-1940, 65-236 (1979), Berlin: Springer, Berlin
[6] Alves, M. T.; Hilker, F. M., Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419, 13-22 (2017) · Zbl 1370.92151 · doi:10.1016/j.jtbi.2017.02.002
[7] Owen, M. R.; Lewis, M. A., How predation can slow, stop or reverse a prey invasion, Bull. Math. Biol., 63, 4, 655-684 (2001) · Zbl 1323.92181 · doi:10.1006/bulm.2001.0239
[8] Zhang, Y.; Richardson, J. S., Unidirectional prey-predator facilitation: apparent prey enhance predators’ foraging success on cryptic prey, Biol. Lett., 3, 3, 348-351 (2007) · doi:10.1098/rsbl.2007.0087
[9] Saha, T.; Bandyopadhyay, M., Dynamical analysis of a delayed ratio-dependent prey-predator model within fluctuating environment, Appl. Math. Comput., 196, 1, 458-478 (2008) · Zbl 1153.34051
[10] Gard, T. C., Persistence in stochastic food web models, Bull. Math. Biol., 46, 3, 357-370 (1984) · Zbl 0533.92028 · doi:10.1016/S0092-8240(84)80044-0
[11] Rihan, F. A.; Rajivganthi, C.; Muthukumar, P., Fractional stochastic differential equations with Hilfer fractional derivative: Poisson jumps and optimal control, Discrete Dyn. Nat. Soc., 2017 (2017) · Zbl 1372.34123 · doi:10.1155/2017/5394528
[12] Ackleh, A.; Allen, L.; Carter, J., Establishing a beachhead: a stochastic population model with an Allee effect applied to species invasion, Theor. Popul. Biol., 71, 290-300 (2007) · Zbl 1124.92046 · doi:10.1016/j.tpb.2006.12.006
[13] Ji, C.; Jiang, D.; Li, X., Qualitative analysis of a stochastic ratio-dependent predator-prey system, J. Comput. Appl. Math., 235, 1326-1341 (2011) · Zbl 1229.92076 · doi:10.1016/j.cam.2010.08.021
[14] Hattaf, K.; Mahrouf, M., Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity, Phys. A, Stat. Mech. Appl., 490, 591-600 (2018) · Zbl 1514.92126 · doi:10.1016/j.physa.2017.08.043
[15] Yang, Q.; Jiang, D., A note on asymptotic behaviors of stochastic population model with Allee effect, Appl. Math. Model., 35, 4611-4619 (2011) · Zbl 1225.34058 · doi:10.1016/j.apm.2011.03.034
[16] Liu, M.; Wang, K., Persistence, extinction and global asymptotical stability of a non-autonomous predator-prey model with random perturbation, Appl. Math. Model., 36, 5344-5353 (2012) · Zbl 1254.34074 · doi:10.1016/j.apm.2011.12.057
[17] Pal, P. J.; Saha, T.; Sen, M.; Banerjee, M., A delayed predator-prey model with strong Allee effect in prey population growth, Nonlinear Dyn., 68, 1-2, 23-42 (2012) · Zbl 1242.92060 · doi:10.1007/s11071-011-0201-5
[18] Rihan, F. A.; Azamov, A. A.; AlSakaji, H. J., An inverse problem for delay differential equations: parameter estimation, nonlinearity, sensitivity, Appl. Math. Inf. Sci., 12, 1, 63-74 (2018) · doi:10.18576/amis/120106
[19] Rihan, F. A.; Lakshmanan, S.; Hashish, A. H.; Rakkiyappan, R.; Ahmed, E., Fractional-order delayed predator-prey systems with Holling type-II functional response, Nonlinear Dyn., 80, 1-2, 777-789 (2015) · Zbl 1345.92123 · doi:10.1007/s11071-015-1905-8
[20] Batzel, J. J.; Tran, H. T., Stability of the human respiratory control system I. Analysis of a two-dimensional delay state-space model, J. Math. Biol., 41, 1, 45-79 (2000) · Zbl 0999.92012 · doi:10.1007/s002850000044
[21] Bocharov, G. A.; Rihan, F. A., Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125, 1-2, 183-199 (2000) · Zbl 0969.65124 · doi:10.1016/S0377-0427(00)00468-4
[22] Kalmár-Nagy, T.; Stépán, G.; Moon, F. C., Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations, Nonlinear Dyn., 26, 2, 121-142 (2001) · Zbl 1005.70019 · doi:10.1023/A:1012990608060
[23] Hutchinson, G. E., Circular causal systems in ecology, Ann. N.Y. Acad. Sci., 50, 4, 221-246 (2948)
[24] Dubey, B.; Kumar, A.; Maiti, A. P., Global stability and Hopf-bifurcation of prey-predator system with two discrete delays including habitat complexity and prey refuge, Commun. Nonlinear Sci. Numer. Simul., 67, 528-554 (2019) · Zbl 1508.92204 · doi:10.1016/j.cnsns.2018.07.019
[25] Liu, Z.; Yuan, R., Stability and bifurcation in a delayed predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 296, 2, 521-537 (2004) · Zbl 1051.34060 · doi:10.1016/j.jmaa.2004.04.051
[26] Xu, R.; Gan, Q.; Ma, Z., Stability and bifurcation analysis on a ratio-dependent predator-prey model with time delay, J. Comput. Appl. Math., 230, 1, 187-203 (2009) · Zbl 1186.34122 · doi:10.1016/j.cam.2008.11.009
[27] Kundu, S.; Maitra, S., Dynamical behaviour of a delayed three species predator-prey model with cooperation among the prey species, Nonlinear Dyn., 92, 2, 627-643 (2018) · Zbl 1398.37094 · doi:10.1007/s11071-018-4079-3
[28] Berec, L., Impacts of foraging facilitation among predators on predator-prey dynamics, Bull. Math. Biol., 72, 1, 94-121 (2010) · Zbl 1184.92048 · doi:10.1007/s11538-009-9439-1
[29] Chunyan, J. I.; Jiang, D.; Liu, H.; Yang, Q., Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation, Math. Probl. Eng., 2010 (2010) · Zbl 1204.34065
[30] Chunyan, J. I.; Jiang, D.; Shi, N., Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl., 359, 2, 482-498 (2009) · Zbl 1190.34064 · doi:10.1016/j.jmaa.2009.05.039
[31] Yan-Fei, J., Moment stability for a predator-prey model with parametric dichotomous noises, Chin. Phys. B, 24, 6 (2015) · doi:10.1088/1674-1056/24/6/060502
[32] Rao, F.; Castillo-Chavez, C.; Kang, Y., Dynamics of a stochastic delayed Harrison-type predation model: effects of delay and stochastic components, Math. Biosci. Eng., 15, 6, 1401-1423 (2018) · Zbl 1416.92145 · doi:10.3934/mbe.2018064
[33] Bandyopadhyay, M.; Saha, T.; Pal, R., Deterministic and stochastic analysis of a delayed allelopathic phytoplankton model within fluctuating environment, Nonlinear Anal. Hybrid Syst., 2, 3, 958-970 (2008) · Zbl 1218.34098 · doi:10.1016/j.nahs.2008.04.001
[34] Buckwar, E., Introduction to the numerical analysis of stochastic delay differential equations, J. Comput. Appl. Math., 125, 1-2, 297-307 (2000) · Zbl 0971.65004 · doi:10.1016/S0377-0427(00)00475-1
[35] Mao, X., Stochastic Differential Equations and Applications (2007), Amsterdam: Elsevier, Amsterdam · Zbl 1138.60005
[36] Heinrich, W., Arnold, L., Stochastic Differential Equations, Theory and Applications, New York. John Wiley & Sons. 1974. XVI, 228 S., £ 9.50 (engl. Übersetzung des deutschen Originals, R. Oldenbourg 1973), Z. Angew. Math. Mech., 57, 271 (1977) · doi:10.1002/zamm.19770570413
[37] Mao, X., Stochastic Differential Equations and Their Applications (1997), Chichester: Horwood, Chichester · Zbl 0892.60057
[38] Liptser, R. S., A strong law of large numbers for local martingales, Stochastics, 3, 1-4, 217-228 (1980) · Zbl 0435.60037 · doi:10.1080/17442508008833146
[39] Ji, C.; Jiang, D., Threshold behaviour of a stochastic SIR model, Appl. Math. Model., 38, 21-22, 5067-5079 (2014) · Zbl 1428.92109 · doi:10.1016/j.apm.2014.03.037
[40] Kloeden, P. E.; Shardlow, T., The Milstein scheme for stochastic delay differential equations without using anticipative calculus, Stoch. Anal. Appl., 30, 2, 181-202 (2012) · Zbl 1247.65005 · doi:10.1080/07362994.2012.628907
[41] Lawton, J. H., More time means more variation, Nature, 334, 6183, 563 (1988) · doi:10.1038/334563a0
[42] Li, D.; Liu, S.; Cui, J., Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching, J. Differ. Equ., 263, 12, 8873-8915 (2017) · Zbl 1377.60070 · doi:10.1016/j.jde.2017.08.066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.