×

Plasma oscillations in a generalized Snyder space. (English. Russian original) Zbl 1482.83050

Theor. Math. Phys. 209, No. 2, 1643-1651 (2021); translation from Teor. Mat. Fiz. 209, No. 2, 377-387 (2021).
Summary: Since Snyder was the first to present the theory of quantized space-time, many studies have been devoted to various phenomenological aspects of this theory. In this paper, we investigate the plasma frequency in a generalized Snyder space. The electron and ion plasma waves in a generalized Snyder space are found. We estimate the upper bound on the isotropic minimal length scale, which is close to \(l_0\sim 10^{-9}\) m.

MSC:

83C45 Quantization of the gravitational field
81S07 Uncertainty relations, also entropic
83C65 Methods of noncommutative geometry in general relativity
82D10 Statistical mechanics of plasmas
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
Full Text: DOI

References:

[1] Snyder, H. S., Quantized space-time, Phys. Rev., 71, 38-41 (1947) · Zbl 0035.13101 · doi:10.1103/PhysRev.71.38
[2] Amelino-Camelia, G.; Giacomini, F.; Gubitosi, G., Thermal and spectral dimension of (generalized) Snyder noncommutative spacetimes, Phys. Lett. B, 784, 50-55 (2018) · Zbl 1411.81120 · doi:10.1016/j.physletb.2018.07.030
[3] Gnatenko, Kh. P.; Tkachuk, V. M., Macroscopic body in the Snyder space and minimal length estimation, Europhys. Lett., 125 (2019) · Zbl 1432.81045 · doi:10.1209/0295-5075/125/50003
[4] Seiberg, N.; Witten, E., String theory and noncommutative geometry, JHEP, 09 (1999) · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[5] Mignemi, S., Classical and quantum mechanics of the nonrelativistic Snyder model, Phys. Rev. D, 84 (2011) · Zbl 1266.83093 · doi:10.1103/PhysRevD.84.025021
[6] Fredenhagen, K.; Reszewski, F., Polymer state approximation of Schrödinger wavefunctions, Class. Quantum Grav., 23, 6577-6584 (2006) · Zbl 1117.83044 · doi:10.1088/0264-9381/23/22/028
[7] Battisti, M. V.; Meljanac, S., Scalar field theory on noncommutative Snyder spacetime, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.024028
[8] Girelli, F.; Livine, E. R., Scalar field theory in Snyder space-time: alternatives, JHEP, 03 (2011) · Zbl 1301.81270 · doi:10.1007/JHEP03(2011)132
[9] Jaroszkiewicz, G., A dynamical model for the origin of Snyder’s quantized spacetime algebra, J. Phys. A: Math. Gen., 28, L343-L348 (1995) · Zbl 0860.58044 · doi:10.1088/0305-4470/28/12/004
[10] Banerjee, R.; Kulkarni, S.; Samanta, S., Deformed symmetry in Snyder space and relativistic particle dynamics, JHEP, 05 (2006) · doi:10.1088/1126-6708/2006/05/077
[11] Garay, L. J., Quantum gravity and minimum length, Internat. J. Modern Phys. A, 10, 145-166 (1995) · doi:10.1142/S0217751X95000085
[12] Lu, L.; Stern, A., Particle dynamics on Snyder space, Nucl. Phys. B, 860, 186-205 (2012) · Zbl 1246.81082 · doi:10.1016/j.nuclphysb.2012.02.012
[13] Mignemi, S., Classical and quantum mechanics of the nonrelativistic Snyder model in curved space, Class. Quantum Grav., 29 (2012) · Zbl 1266.83093 · doi:10.1088/0264-9381/29/21/215019
[14] Leiva, C., Harmonic oscillator in Snyder space: the classical case and the quantum case, Pramana J. Phys., 74, 169-175 (2010) · doi:10.1007/s12043-010-0018-7
[15] Tonks, L.; Langmuir, I., Oscillations in ionized gases, Phys. Rev., 33, 195-210 (1929) · JFM 55.0554.12 · doi:10.1103/PhysRev.33.195
[16] Kempf, A., Non-pointlike particles in harmonic oscillators, J. Phys. A: Math. Gen., 30, 2093-2101 (1997) · Zbl 0930.58026 · doi:10.1088/0305-4470/30/6/030
[17] Kempf, A.; Mangano, G.; Mann, R. B., Hilbert space representation of the minimal length uncertainty relation, Phys. Rev. D, 52, 1108-1118 (1995) · doi:10.1103/PhysRevD.52.1108
[18] Kempf, A.; Mangano, G., Minimal length uncertainty relation and ultraviolet regularization, Phys. Rev. D, 55, 7909-7920 (1997) · doi:10.1103/PhysRevD.55.7909
[19] Stetsko, M. M.; Tkachuk, V. M., Perturbation hydrogen-atom spectrum in deformed space with minimal length, Phys. Rev. A, 74 (2006) · doi:10.1103/PhysRevA.74.012101
[20] Brau, F., Minimal length uncertainty relation and the hydrogen atom, J. Phys. A: Math. Gen., 32, 7691-7696 (1999) · Zbl 0991.81047 · doi:10.1088/0305-4470/32/44/308
[21] Sprenger, M.; Nicolini, P.; Bleicher, M., Physics on the smallest scales: an introduction to minimal length phenomenology, Eur. J. Phys., 33, 853-862 (2012) · Zbl 1271.83034 · doi:10.1088/0143-0807/33/4/853
[22] Moayedi, S. K.; Setare, M. R.; Khosropour, B., Lagrangian formulation of a magnetostatic field in the presence of a minimal length scale based on the Kempf algebra, Internat. J. Modern Phys. A, 28 (2013) · Zbl 1280.81150 · doi:10.1142/S0217751X1350142X
[23] Khosropour, B., Radiation and generalized uncertainty principle, Phys. Lett. B, 785, 3-8 (2018) · doi:10.1016/j.physletb.2018.08.033
[24] Khosropour, B., Angular momentum and Zeeman effect in the presence of a minimal length based on the Kempf-Mann-Mangano algebra, Eur. Phys. J. Plus, 131 (2016) · doi:10.1140/epjp/i2016-16247-7
[25] Khosropour, B.; Eghbali, M.; Ghorbanali, S., \(q\)-nonlinear Schrodinger and \(q\)-nonlinear Klein-Gordon equations in the frame work of GUP, Gen. Rel. Grav., 50 (2018) · Zbl 1392.83033 · doi:10.1007/s10714-018-2348-6
[26] Faizal, M., Consequences of deformation of the Heisenberg algebra, Internat. J. Geom. Meth. Modern Phys., 12 (2015) · Zbl 1309.81108 · doi:10.1142/S021988781550022X
[27] Chargui, Y.; Chetouani, L.; Trabelsi, A., Exact solution of \(D\)-dimensional Klein-Gordon oscillator with minimal length, Commun. Theor. Phys., 53, 231-236 (2010) · Zbl 1225.81061 · doi:10.1088/0253-6102/53/2/05
[28] Chen, F. F., Introduction to Plasma Physics and Controlled Fusion (2016), New York: Plenum, New York · doi:10.1007/978-3-319-22309-4
[29] Thorne, K. S.; Blandford, R. D., Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics (2017), Princeton, NJ: Princeton Univ. Press, Princeton, NJ · Zbl 1398.82004
[30] Pavlopoulos, T. G., Breakdown of Lorentz invariance, Phys. Rev., 159, 1106-1110 (1967) · Zbl 0173.30504 · doi:10.1103/PhysRev.159.1106
[31] Heisenberg, W., Zur Quantentheorie der Elementarteilchen, Z. Naturforschung, 5, 251-259 (1950) · Zbl 0036.26801 · doi:10.1515/zna-1950-0502
[32] Heisenberg, W., Über die in der Theorie der Elementarteilchen auftretende universelle Länge, Ann. Phys., 32, 20-33 (1938) · doi:10.1002/andp.19384240105
[33] Nouicer, Kh., Casimir effect in the presence of minimal lengths, J. Phys. A: Math. Gen., 38, 10027-10035 (2005) · Zbl 1079.81065 · doi:10.1088/0305-4470/38/46/009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.