×

Higher differentiability of solutions for a class of obstacle problems with variable exponents. (English) Zbl 1482.49035

Summary: In this paper we prove a higher differentiability result for the solutions to a class of obstacle problems in the form \[ \min \left\{ \int_{\Omega} F ( x , D w )\, d x : w \in \mathcal{K}_\psi ( \Omega ) \right\} \] where \(\psi \in W^{1 , p ( x )}(\Omega)\) is a fixed function called obstacle and \(\mathcal{K}_\psi(\Omega) = \{w \in W_0^{1 , p ( x )}(\Omega) + u_0 : w \geq \psi \text{ a.e. in } \Omega \}\) is the class of the admissible functions, for a suitable boundary value \(u_0\). We deal with a convex integrand \(F\) which satisfies the \(p(x)\)-growth conditions \[ | \xi |^{p ( x )} \leq F(x, \xi) \leq C(1 + | \xi |^{p ( x )}), \;\;p(x) > 1. \]

MSC:

49N15 Duality theory (optimization)
49N60 Regularity of solutions in optimal control
49N99 Miscellaneous topics in calculus of variations and optimal control
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] Acerbi, E.; Mingione, G., Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156, 2, 121-140 (2001) · Zbl 0984.49020
[2] Acerbi, E.; Mingione, G., Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 163, 3, 213-259 (2002) · Zbl 1038.76058
[3] Acerbi, E.; Mingione, G., Gradient estimates for the \(p(x)\)-laplacean system, J. Reine Angew. Math., 584, 117-148 (2005) · Zbl 1093.76003
[4] Byun, S.-S.; Cho, Y.; Ok, J., Global gradient estimates for nonlinear obstacle problems with nonstandard growth, Forum Math., 28, 4, 729-747 (2016) · Zbl 1343.35108
[5] Caselli, M.; Eleuteri, M.; Passarelli di Napoli, A., Regularity results for a class of obstacle problems with p, q-growth conditions, ESAIM Control Optim. Calc. Var., 27, 19 (2021) · Zbl 1468.35068
[6] Chlebicka, I.; De, C., Filippis: removable sets in non-uniformly elliptic problems, Ann. Mat. Pura Appl., 199, 2, 619-649 (2020) · Zbl 1437.35333
[7] Cianchi, A., Interpolation of operators and Sobolev embedding theorem in Orlicz spaces, (International Conference on Differential Equations. International Conference on Differential Equations, Lisboa, 1995 (1998), World Sci. Publ.: World Sci. Publ. River Edge), 306-310 · Zbl 1011.46025
[8] Cruz-Uribe, D. V.; Fiorenza, A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis (2013) · Zbl 1268.46002
[9] Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M., Lebesgue and Sobolev spaces with variable exponents, Lect. Notes Math., 2017 (2011) · Zbl 1222.46002
[10] Eleuteri, M., Hölder continuity results for a class of functionals with non standard growth, Boll. Unione Mat. Ital., 7, 8, 129-157 (2004) · Zbl 1178.49045
[11] Eleuteri, M.; Habermann, J., Regularity results for a class of obstacle problems under nonstandard growth conditions, J. Math. Anal. Appl., 344, 2, 1120-1142 (2008) · Zbl 1147.49028
[12] Eleuteri, M.; Habermann, J., Calderón-Zygmund type estimates for a class of obstacle problems with \(p(x)\) growth, J. Math. Anal. Appl., 372, 1, 140-161 (2010) · Zbl 1211.49046
[13] Eleuteri, M.; Marcellini, P.; Mascolo, E., Lipschitz continuity for energy integrals with variable exponents, Atti Accad. Naz. Lincei, Clas. Sci. Fis., Mat. Natur., Rend. Lincei Mat. Appl., 27, 1, 61-87 (2016) · Zbl 1338.35169
[14] Eleuteri, M.; Passarelli di Napoli, A., Higher differentiability for solutions to a class of obstacle problems, Calc. Var. Partial Differ. Equ., 57, 5, 115 (2018) · Zbl 1401.35111
[15] Eleuteri, M.; Passarelli di Napoli, A., Regularity results for a class of non-differentiable obstacle problems, Nonlinear Anal., Theory Methods Appl., 194, Article 111434 pp. (2020) · Zbl 1436.49009
[16] M. Eleuteri, A. Passarelli di Napoli, Lipschitz regularity of minimizers of variational integrals with variable exponents, 2021, submitted for publication.
[17] Gavioli, C., Higher differentiability of solutions to a class of obstacle problems under non-standard growth conditions, Forum Math., 31, 6, 1501-1516 (2019) · Zbl 1430.35096
[18] Gavioli, C., A priori estimates for solutions to a class of obstacle problems under \(p, q\)-growth conditions, J. Elliptic Parabolic Equ., 5, 2, 325-347 (2019) · Zbl 1433.35131
[19] Gavioli, C., Higher differentiability for a class of obstacle problems with nearly linear growth conditions, Atti Accad. Naz. Lincei, Clas. Sci. Fis., Mat. Natur., Rend. Lincei Mat. Appl., 31, 4, 767-789 (2020) · Zbl 1468.35069
[20] Gentile, A., Higher differentiability results for solutions to a class of non-autonomous obstacle problems with sub-quadratic growth conditions, Forum Math., 33, 3, 669-695 (2021) · Zbl 1489.35132
[21] Giannetti, F.; Passarelli di Napoli, A., Higher differentiability of minimizers of variational integrals with variable exponents, Math. Z., 280, 3-4, 873-892 (2015) · Zbl 1320.49025
[22] Giova, R., Higher differentiability for n-harmonic systems with Sobolev coefficients, J. Differ. Equ., 259, 11, 5667-5687 (2015) · Zbl 1326.35155
[23] Giova, R., Besov regularity for solutions of elliptic equations with variable exponents, Math. Nachr., 293, 1459-1480 (2020) · Zbl 1523.35092
[24] Giova, R., Regularity results for non-autonomous functionals with LlogL-growth and Orlicz Sobolev coefficients, Nonlinear Differ. Equ. Appl., 23, 64 (2016) · Zbl 1432.49051
[25] Giova, R.; Passarelli di Napoli, A., Regularity results for a priori bounded minimizers of non-autonomous functionals with discontinuous coefficients, Adv. Calc. Var., 12, 1, 85-110 (2019) · Zbl 1406.49040
[26] Giusti, E., Direct Methods in the Calculus of Variations (2003), World Scientific Publishing Co. · Zbl 1028.49001
[27] Grimaldi, A. G., Regularity results for solutions to a class of obstacle problems, Nonlinear Anal., Real World Appl., 62 (2021) · Zbl 1477.49058
[28] A.G. Grimaldi, E. Ipocoana, Higher fractional differentiability for solutions to a class of obstacle problems with non-standard growth conditions, 2021, submitted for publication.
[29] Hajłasz, P., Sobolev spaces on an arbitrary metric space, Potential Anal., 5, 4, 403-415 (1996) · Zbl 0859.46022
[30] Iwaniec, T., p-harmonic tensors and quasiregular mappings, Ann. Math., 136, 2, 589-624 (1992) · Zbl 0785.30009
[31] Iwaniec, T.; Verde, A., On the operator \(L(f) = f \log | f |\), J. Funct. Anal., 169, 391-420 (1999) · Zbl 0961.47020
[32] Kristensen, J.; Mingione, G., Boundary regularity in variational problems, Arch. Ration. Mech. Anal., 198, 369-455 (2010) · Zbl 1228.49043
[33] Mingione, G., Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51, 355-426 (2006) · Zbl 1164.49324
[34] Mingione, G., Short Tales from Nonlinear Calderón-Zygmund Theory, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Applications, 159-204 (2017), Springer · Zbl 1387.35008
[35] Passarelli di Napoli, A., Higher differentiability of minimizers of variational integrals with Sobolev coefficients, Adv. Calc. Var., 7, 1, 59-89 (2014) · Zbl 1280.49058
[36] Passarelli di Napoli, A., Higher differentiability of solutions of elliptic systems with Sobolev coefficients: the case \(p = n = 2\), Potential Anal., 41, 3, 715-735 (2014) · Zbl 1315.35048
[37] Passarelli di Napoli, A., Regularity results for non-autonomous variational integrals with discontinuous coefficients, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 26, 4, 475-496 (2015) · Zbl 1329.49066
[38] Zhikov, V. V., On some variational problems, Russ. J. Math. Phys., 5, 1, 105-116 (1997) · Zbl 0917.49006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.