×

Computation of axisymmetric nonlinear low-frequency resonances of hyperelastic thin-walled cylindrical shells. (English) Zbl 1481.74329

Summary: A mathematical modeling is employed to investigate the axisymmetric nonlinear low-frequency vibrations of a class of hyperelastic thin-walled cylindrical shells subjected to axial harmonic excitations. A modified frequency domain method is presented to determine the stability of periodic solutions. Based on the variational method, the system of nonlinear governing differential equations describing the coupled axial-radial vibrations of simply supported shells is derived. Then, the harmonic balance method and the arc length method with two-point prediction are adopted to obtain the complicated steady-state solutions effectively, and the stability is discussed with the modified sorting method. Significantly, numerical results manifest that the length-diameter ratio serves a critical role in the nonlinear low-frequency vibrations, its variation should give rise to abundant nonlinear phenomena, such as the typical softening and hardening, the resonance peak shift and the isolated bubble shaped response.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
70K30 Nonlinear resonances for nonlinear problems in mechanics
74B20 Nonlinear elasticity
74K25 Shells

Software:

NLvib
Full Text: DOI

References:

[1] Ambartsumyan, S. A.; Belubekyan, M. V., Axisymmetric vibrations of an orthotropic non-uniform cylindrical shell, PMM-J. Appl. Math. Mech., 72, 1, 73-76 (2008) · Zbl 1177.74248
[2] Wang, C. Y.; Li, C. F.; Adhikari, S., Axisymmetric vibration of single-walled carbon nanotubes in water, Phys. Lett. A, 374, 24, 2467-2474 (2010) · Zbl 1248.82109
[3] Lellep, J.; Roots, L., Axisymmetric vibrations of stepped cylindrical shells made of composite materials. Part 2, Mech. Compos. Mater., 49, 2, 171-180 (2013)
[4] A. V. Lopatin & E.V. Morozov, Axisymmetric vibrations of the composite orthotropic cylindrical shell with rigid weightless end disks. Thin-Walled Struct., 135 (2019) 463-471. https://doi.org/10.1016/j.tws.2018.11.032.
[5] Zhu, F.; Wu, B.; Destrade, M.; Chen, W., Electrostatically tunable axisymmetric vibrations of soft electro-active tubes, J. Sound Vibr., Article 115467 pp. (2020)
[6] Liu, F.; Kong, X.; Zheng, C.; Xu, S.; Wu, W.; Chen, P., The influence of rubber layer on the response of fluid-filled container due to high-velocity impact, Compos. Struct., 183, 671-681 (2018)
[7] Xue, C.; Gao, H.; Hu, Y.; Hu, G., Hyperelastic Characteristics of Graphene Natural Rubber Composites and Reinforcement and Toughening Mechanisms at Multi-scale, Compos. Struct., 228, Article 111365 pp. (2019)
[8] Masson, I.; Fassot, C.; Zidi, M., Finite dynamic deformations of a hyperelastic, anisotropic, incompressible and prestressed tube. Applications to in vivo arteries, Eur. J. Mech. A/Solid, 29, 4, 523-529 (2010) · Zbl 1480.74225
[9] Akyüz, U.; Ertepinar, A., Stability and asymmetric vibrations of pressurized compressible hyperelastic cylindrical shells, Int. J. Non-Linear Mech., 34, 3, 391-404 (1999) · Zbl 1342.74069
[10] Wu, B.; Su, Y.; Liu, D.; Chen, W.; Zhang, C., On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders, J. Sound Vibr., 421, 17-47 (2018)
[11] Wang, R.; Ding, H.; Yuan, X.; Lv, N.; Chen, L. Q., Different types of solitary waves in a thermo-hyperelastic neo-Hookean cylindrical shell, Compos. Struct., Article 112178 pp. (2020)
[12] Reddy, J. N., Theory and Analysis of Elastic Plates and Shells (2006), CRC press
[13] Reddy, J. N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis (2003), CRC press
[14] Leissa, A. W., Vibration of Shells (Vol. 288). Scientific and Technical Information Office (1973), National Aeronautics and Space Administration
[15] Shen, H. S., Functionally Graded Materials: Nonlinear Analysis of Plates and Shells (2016), CRC press
[16] Sheng, G. G.; Wang, X., The dynamic stability and nonlinear vibration analysis of stiffened functionally graded cylindrical shells, Appl. Math. Model., 56, 389-403 (2018) · Zbl 1480.74124
[17] Foroutan, K.; Ahmadi, H., Nonlinear free vibration analysis of SSMFG cylindrical shells resting on nonlinear viscoelastic foundation in thermal environment, Appl. Math. Model. (2020) · Zbl 1481.74255
[18] Zhang, J.; Xu, J.; Yuan, X.; Zhang, W.; Niu, D., Strongly nonlinear vibrations of a hyperelastic thin-walled cylindrical shell based on the modified Lindstedt-Poincaré method, Int. J. Struct. Stab. Dyn., Article 1950160 pp. (2019)
[19] Amabili, M., Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials (2018), Cambridge University Press · Zbl 1431.74002
[20] Nayfeh, A. H., Introduction to Perturbation Techniques (2011), Wiley
[21] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations (2008), John Wiley & Sons
[22] Mickens, R. E., Truly Nonlinear Oscillations: Harmonic Balance, Parameter Expansions, Iteration, and Averaging Methods (2010), World Scientific · Zbl 1221.34001
[23] Liao, S., Beyond Perturbation: Introduction to the Homotopy Analysis Method (2003), CRC press
[24] Krack, M.; Gross, J., Harmonic Balance for Nonlinear Vibration Problems (2019), Springer: Springer New York · Zbl 1416.70003
[25] Chen, Y. M.; Liu, J. K.; Meng, G., Incremental harmonic balance method for nonlinear flutter of an airfoil with uncertain-but-bounded parameters, Appl. Math. Model., 36, 2, 657-667 (2012) · Zbl 1236.74071
[26] Panigrahi, B.; Pohit, G., Study of non-linear dynamic behavior of open cracked functionally graded Timoshenko beam under forced excitation using harmonic balance method in conjunction with an iterative technique, Appl. Math. Model., 57, 248-267 (2018) · Zbl 1480.74189
[27] Fontanela, F.; Grolet, A.; Salles, L.; Hoffmann, N., Computation of quasi-periodic localised vibrations in nonlinear cyclic and symmetric structures using harmonic balance methods, J. Sound Vibr., 438, 54-65 (2019)
[28] Ye, S. Q.; Mao, X. Y.; Ding, H.; Ji, J. C.; Chen, L. Q., Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions, Int. J. Mech. Sci., 168, Article 105294 pp. (2020)
[29] Crisfield, M. A., A fast incremental/iterative solution procedure that handles “snap-through, (Computational methods in nonlinear structural and solid mechanics. Computational methods in nonlinear structural and solid mechanics, Pergamon (1981)), 55-62 · Zbl 0479.73031
[30] Crisfield, M. A., An arc-length method including line searches and accelerations, Int. J. Numer. Methods Eng., 19, 9, 1269-1289 (1983) · Zbl 0516.73084
[31] Riks, E., An incremental approach to the solution of snapping and buckling problems, Int. J. Solids Struct., 15, 7, 529-551 (1979) · Zbl 0408.73040
[32] Wempner, G. A., Discrete approximations related to nonlinear theories of solids, Int. J. Solids Struct., 7, 11, 1581-1599 (1971) · Zbl 0222.73054
[33] Tao, C.; Dai, T., Isogeometric analysis for postbuckling of sandwich cylindrical shell panels with graphene platelet reinforced functionally graded porous core, Compos. Struct., Article 113258 pp. (2020)
[34] Rezaiee-Paj, M.; Naserian, R., Geometrical nonlinear analysis based on optimization technique, Appl. Math. Model., 53, 32-48 (2018) · Zbl 1480.74249
[35] Ferreira, J. V.; Serpa, A. L., Application of the arc-length method in nonlinear frequency response, J. Sound Vibr., 284, 1, 133-149 (2005)
[36] Nayfeh, A. H.; Balachandran, B., Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods (1995), John Wiley & Sons · Zbl 0848.34001
[37] Peletan, L.; Baguet, S.; Torkhani, M.; Jacquet-Richardet, G., A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics, Nonlinear Dyn., 72, 3, 671-682 (2013)
[38] Hill, G. W., On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon, Acta Math., 8, 1, 1-36 (1886) · JFM 18.1106.01
[39] Lazarus, A.; Thomas, O., A harmonic-based method for computing the stability of periodic solutions of dynamical systems, C. R., Méc., 338, 9, 510-517 (2010), https://doi:10.1016/j.crme.2010.07.020 · Zbl 1223.37106
[40] Luo, A. C.; Huang, J., Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance, J. Vib. Control, 18, 11, 1661-1674 (2012) · Zbl 1251.74024
[41] Guillot, L.; Lazarus, A.; Thomas, O.; Vergez, C.; Cochelin, B., A purely frequency based Floquet-Hill formulation for the efficient stability computation of periodic solutions of ordinary differential systems, J. Comput. Phys., 416, Article 109477 pp. (2020) · Zbl 1437.65074
[42] Ogden R, W., Non-linear elastic deformations, Courier Corp. (1997)
[43] Breslavsky, I. D.; Amabili, M.; Legrand, M., Nonlinear vibrations of thin hyperelastic plates, J. Sound Vibr., 333, 19, 4668-4681 (2014)
[44] Amabili, M.; Balasubramanian, P.; Ferrari, G., Travelling wave and non-stationary response in nonlinear vibrations of water-filled circular cylindrical shells: Experiments and simulations, J. Sound Vibr., 381, 220-245 (2016)
[45] M. Radwanska, A. Stankiewicz, A. Wosatko & J. Pamin, Plate and shell structures: selected analytical and finite element solutions (2017), pp. 1334.
[46] Soedel, W.; Qatu, M. S., Vibrations of Shells and Plates, 98 (2005), Journal of the Acoustical Society of America
[47] Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates, 147 (2008), Cambridge University Press · Zbl 1154.74002
[48] De Borst, R.; Crisfield, M. A.; Remmers, J.; Verhoosel, C. V., Nonlinear Finite Element Analysis of Solids and Structures (2012), John Wiley & Sons · Zbl 1300.74002
[49] Dong, K. J., Development of Implicit Nonlinear Finite Element Analysis Framework Based on SiPESC (2016)
[50] Huang, J. L.; Su, R. K.L.; Chen, S. H., Precise Hsu’s method for analyzing the stability of periodic solutions of multi-degrees-of-freedom systems with cubic nonlinearity, Comput. Struct., 87, 23, 1624-1630 (2009)
[51] Kong, X.; Sun, W.; Wang, B.; Wen, B., Dynamic and stability analysis of the linear guide with time-varying, piecewise-nonlinear stiffness by multi-term incremental harmonic balance method, J. Sound Vibr., 346, 265-283 (2015)
[52] Karličić, D.; Chatterjee, T.; Cajić, M.; Adhikari, S., Parametrically amplified Mathieu-Duffing nonlinear energy harvesters, J. Sound Vibr., 488, Article 115677 pp. (2020)
[53] Nayfeh, A. H.; Pai, P. F., Linear and Nonlinear Structural Mechanics (2002), Wiley
[54] Chen, L. Q.; Jiang, W. A.; Panyam, M.; Daqaq, M. F., A Broadband Internally-Resonant Vibratory Energy Harvester, J. Vib. Acous., 138, 6, 61007 (2016)
[55] Chen, Jie; Hu, Wen-Hua; Li, Qiu-Sheng, Nonlinear dynamics of a foldable multibeam structure with one to two internal resonances, Int. J. Mech. Sci., 150, 369-378 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.