×

On effective equidistribution for quotients of \(\mathrm{SL}(d, \mathbb{R} )\). (English) Zbl 1481.22008

Summary: We prove the first case of polynomially effective equidistribution of closed orbits of semisimple groups with nontrivial centralizer. The proof relies on uniform pectral gap, builds on, and extends work of the second author et al. [Invent. Math. 177, No. 1, 137–212 (2009; Zbl 1176.37003)].

MSC:

22E40 Discrete subgroups of Lie groups
22E46 Semisimple Lie groups and their representations
37A17 Homogeneous flows
37A15 General groups of measure-preserving transformations and dynamical systems
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)

Citations:

Zbl 1176.37003

References:

[1] Borel, A., Linear Algebraic Groups, Graduate Texts in Mathematics (1991), New York: Springer, New York · Zbl 0726.20030
[2] Borel, A.; Tits, J., Groupes réductifs, Institut des Hautes Etudes Scientifiques, Publications Mathématiques, 27, 55-150 (1965) · Zbl 0145.17402 · doi:10.1007/BF02684375
[3] Burger, M.; Sarnak, P., Ramanujan duals. II, Inventiones mathematicae, 106, 1-11 (1991) · Zbl 0774.11021 · doi:10.1007/BF01243900
[4] Clozel, L., Démonstration de la conjecture t, Inventiones mathematicae, 151, 297-328 (2003) · Zbl 1025.11012 · doi:10.1007/s00222-002-0253-8
[5] Dani, S. G.; Margulis, G. A., Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Indian Academy of Sciences. Proceedings. Mathematical Sciences, 101, 1-17 (1991) · Zbl 0731.22008
[6] Einsiedler, M.; Margulis, G.; Venkatesh, A., Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Inventiones Mathematicae, 177, 137-212 (2009) · Zbl 1176.37003 · doi:10.1007/s00222-009-0177-7
[7] M. Einsiedler, G. Margulis, A. Mohammadi and A. Venkatesh, Effective equidistribution and property (t), Journal of the American Mathematical Society, to appear, 10.1090/jams/930. · Zbl 1466.11049
[8] Gorodnik, A.; Maucourant, F.; Oh, H., Manin’s and Peyre’s conjectures on rational points and adelic mixing, Annales Scientifiques de l’École Normale Supérieure, 41, 383-435 (2008) · Zbl 1161.14015
[9] Jacquet, H.; Langlands, R. P., Automorphic Forms on GL (2), Lecture Notes in Mathematics (1970), Berlin-New York: Springer, Berlin-New York · Zbl 0236.12010
[10] Kazhdan, D. A., Connection of the dual space of a group with the structure of its close subgroups, Functional Analysis and its Applications, 1, 63-65 (1967) · Zbl 0168.27602 · doi:10.1007/BF01075866
[11] Y. Kleinbock, D.; Margulis, G. A., Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Sinaį’s Moscow Seminar on Dynamical Systems, American Mathematical Society Translations, 141-172 (1996), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0843.22027
[12] Y. Kleinbock, D.; Margulis, G. A., Flows on homogeneous spaces and diophantine approximation on manifolds, Annals of mathematics, 148, 339-360 (1998) · Zbl 0922.11061 · doi:10.2307/120997
[13] Y. Kleinbock, D.; Margulis, G. A., On effective equidistribution of expanding translates of certain orbits in the space of lattices, Number Theory, Analysis and Geometry, 385-396 (2012), New York: Springer, New York · Zbl 1262.37005
[14] Margulis, G., Discrete subgroups and ergodic theory, Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), 377-398 (1989), Boston, MA: Academic Press, Boston, MA · Zbl 0675.10010
[15] Oh, H., Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Mathematical Journal, 113, 133-192 (2002) · Zbl 1011.22007 · doi:10.1215/S0012-7094-02-11314-3
[16] Ratner, M., Invariant measures for unipotent translations on homogeneous spaces, Proceedings of the National Academy of Sciences of the United States of America, 87, 4309-4311 (1990) · Zbl 0819.22004 · doi:10.1073/pnas.87.11.4309
[17] Ratner, M., On measure rigidity of unipotent subgroups of semisimple groups, ActaMathematica, 165, 229-309 (1990) · Zbl 0745.28010
[18] Ratner, M., Strict measure rigidity for unipotent subgroups of solvable groups, Inventiones Mathematicae, 101, 449-482 (1990) · Zbl 0745.28009 · doi:10.1007/BF01231511
[19] Ratner, M., Distribution rigidity for unipotent actions on homogeneous spaces, Bulletin of the American Mathematical Society, 24, 321-325 (1991) · Zbl 0733.22006 · doi:10.1090/S0273-0979-1991-16022-2
[20] Ratner, M., On Raghunathan’s measure conjecture, Annals of Mathematics, 134, 545-607 (1991) · Zbl 0763.28012 · doi:10.2307/2944357
[21] Selberg, A., On the estimation of fourier coefficients of modular forms, Theory of Numbers, Proceedings of Symposia in Pure Mathematics, 1-15 (1965), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0142.33903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.