×

Decomposition for a quaternion tensor triplet with applications. (English) Zbl 1481.15027

Summary: In this paper, we investigate and discuss in detail the structure and properties of product singular value decomposition for a quaternion tensor triplet under Einstein product (higher-order PSVD). As an application, we consider color video watermark processing with this higher-order PSVD.

MSC:

15A69 Multilinear algebra, tensor calculus
11R52 Quaternion and other division algebras: arithmetic, zeta functions
15A18 Eigenvalues, singular values, and eigenvectors
Full Text: DOI

References:

[1] Bihan, NL; Mars, J., Singular value decomposition of quaternion matrices: A new tool for vector-sensor signal processing, Signal Process., 84, 7, 1177-1199 (2004) · Zbl 1154.94331 · doi:10.1016/j.sigpro.2004.04.001
[2] Brazell, M.; Li, N.; Navasca, C.; Tamon, C., Solving multilinear systems via tensor inversion, SIAM J. Matrix Anal. Appl., 34, 542-570 (2013) · Zbl 1273.15028 · doi:10.1137/100804577
[3] Chang, J.H., Ding, J.J.: Quaternion matrix singular value decomposition and its applications for color image processing. Image Process. (2003)
[4] Chen, B.; Shu, H.; Coatrieux, G.; Chen, G.; Sun, X., Color image analysis by quaternion-type moments, J. Math. Imaging Vis., 51, 1, 124-144 (2015) · Zbl 1331.68266 · doi:10.1007/s10851-014-0511-6
[5] Cichocki, A., Zdunek, R., Phan, A.H., Amar, S.I.: Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. John Wiley and Sons (2009)
[6] Comon, P.; GH, G.; Lim, LH; Mourrain, B., Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl., 30, 3, 1254-1279 (2008) · Zbl 1181.15014 · doi:10.1137/060661569
[7] Cox, I.J., Ingemar, et al.: Digital watermarking. San Francisco: Morgan Kaufmann (2002) · Zbl 1002.68804
[8] De Lathauwer, L.: Signal processing based on multilinear algebra. Ph.D thesis, Katholike Universiteit Leuven (1997)
[9] De Lathauwer, L.; De Moor, B.; Vandewalle, J., A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21, 4, 1253-1278 (2000) · Zbl 0962.15005 · doi:10.1137/S0895479896305696
[10] De Moor, B.; Van Dooren, P., Generalizations of the singular value and QR decompositions, SIAM J. Matrix Anal. Appl., 13, 4, 993-1014 (1992) · Zbl 0764.65014 · doi:10.1137/0613060
[11] Ding, WY; Qi, LQ; Wei, YM, \( \cal{M} \)-tensors and nonsingular \(\cal{M} \)-tensors, Linear Algebra Appl., 439, 10, 3264-3278 (2013) · Zbl 1283.15074 · doi:10.1016/j.laa.2013.08.038
[12] Einstein, A.: The foundation of the general theory of relativity. Kox AJ, Klein MJ, Schulmann R, editors. The Collected Papers of Albert Einstein 6. Princeton (NJ): Princeton University Press. 146-200 (2007)
[13] He, Z.H., Chen, Chen., Wang, X.X.: A simultaneous decomposition for three quaternion tensors with applications in color video signal processing. Anal. Appl. (Singap.) 19(3), 529-549 (2021) · Zbl 1467.15019
[14] He, Z.H., Wang, M., Liu, X.: On the general solutions to some systems of quaternion matrix equations. Rev. R. Acad. Cienc. Exactas \(F \acute{i}\) s. Nat. Ser. A Mat. RACSAM. 114, 95 (2020) · Zbl 1436.15017
[15] He, ZH, Pure PSVD approach to Sylvester-type quaternion matrix equations, Electron. J. Linear Algebra., 35, 266-284 (2019) · Zbl 1418.15015 · doi:10.13001/1081-3810.3917
[16] He, ZH, The general solution to a system of coupled Sylvester-type quaternion tensor equations involving \(\eta \)-Hermicity, Bull. Iranian Math. Soc., 45, 1407-1430 (2019) · Zbl 1423.15016 · doi:10.1007/s41980-019-00205-7
[17] He, ZH, Some new results on a system of Sylvester-type quaternion matrix equations, Linear Multilinear Algebra, 69, 16, 3069-3091 (2021) · Zbl 1481.15015 · doi:10.1080/03081087.2019.1704213
[18] He, ZH; Wang, QW, A real quaternion matrix equation with with applications, Linear Multilinear Algebra, 61, 725-740 (2013) · Zbl 1317.15016 · doi:10.1080/03081087.2012.703192
[19] He, ZH; Wang, QW, The \(\eta \)-bihermitian solution to a system of real quaternion matrix equations, Linear Multilinear Algebra, 62, 1509-1528 (2014) · Zbl 1307.15019 · doi:10.1080/03081087.2013.839667
[20] He, ZH; Wang, M., A quaternion matrix equation with two different restrictions, Adv. Appl. Clifford Algebras., 31, 25 (2021) · Zbl 1464.15022 · doi:10.1007/s00006-021-01122-x
[21] He, ZH; Agudelo, OM; Wang, QW; De Moor, B., Two-sided coupled generalized Sylvester matrix equations solving using a simultaneous decomposition for fifteen matrices, Linear Algebra Appl., 496, 549-593 (2016) · Zbl 1332.15006 · doi:10.1016/j.laa.2016.02.013
[22] He, ZH; Liu, J.; Tam, TY, The general \(\phi \)-Hermitian solution to mixed pairs of quaternion matrix Sylvester equations, Electron. J. Linear Algebra., 32, 475-499 (2017) · Zbl 1386.15017 · doi:10.13001/1081-3810.3606
[23] He, ZH; Wang, M.; Zhang, Y., The complete equivalence canonical form of four matrices over an arbitrary division ring, Linear Multilinear Algebra, 66, 74-95 (2018) · Zbl 1386.15029 · doi:10.1080/03081087.2017.1284740
[24] He, ZH; Wang, QW; Zhang, Y., A simultaneous decomposition for seven matrices with applications, J. Comput. Appl. Math., 349, 93-113 (2019) · Zbl 1404.15011 · doi:10.1016/j.cam.2018.09.001
[25] He, ZH; Ng, MK; Zeng, C., Generalized singular value decompositions for tensors and their applications, Numer. Math. Theor. Meth. Appl., 14, 3, 692-713 (2021) · Zbl 1488.15044 · doi:10.4208/nmtma.OA-2020-0132
[26] He, ZH; Qin, WL; Wang, XX, Some applications of a decomposition for five quaternion matrices in control system and color image processing, Comput. Appl. Math., 40, 205 (2021) · Zbl 1476.68294 · doi:10.1007/s40314-021-01579-3
[27] Jain, C., Arora, S., Panigrahi, P.K.: A reliable SVD based watermarking schem. arXiv preprint arXiv:0808.0309, (2008)
[28] Jia, Z., Ng, M.K., Song, G.J.: Robust quaternion matrix completion with applications to image inpainting. Numer. Linear Algebra Appl. (2019) (Article ID e2245) · Zbl 1474.65126
[29] Jia, Z.; Ng, MK; Song, GJ, Lanczos method for large-scale quaternion singular value decomposition, Numer. Algorithms., 82, 699-717 (2019) · Zbl 07107363 · doi:10.1007/s11075-018-0621-0
[30] Khoromskij, BN; Schwab, C., Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs, SIAM J. Sci. Comput., 33, 1, 364-385 (2011) · Zbl 1243.65009 · doi:10.1137/100785715
[31] Kilmer, ME; Martin, CD, Factorization strategies for third-order tensors, Linear Algebra Appl., 435, 641-658 (2011) · Zbl 1228.15009 · doi:10.1016/j.laa.2010.09.020
[32] Kilmer, ME; Braman, K.; Hao, N.; Hoover, RC, Third order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM J. Matrix Anal. Appl., 34, 148-172 (2013) · Zbl 1269.65044 · doi:10.1137/110837711
[33] Kolda, TG; Bader, BW, Tensor decompositions and applications, SIAM Rev., 51, 3, 455-500 (2009) · Zbl 1173.65029 · doi:10.1137/07070111X
[34] Kyrchei, I., Determinantal representations of solutions to systems of quaternion matrix equations, Adv. Appl. Clifford Algebras., 28, 1, 28-23 (2018) · Zbl 1391.15057 · doi:10.1007/s00006-018-0843-1
[35] Kyrchei, I., Cramer’s rules for Sylvester quaternion matrix equation and its special cases, Adv. Appl. Clifford Algebras, 28, 28-90 (2018) · Zbl 1418.17065 · doi:10.1007/s00006-018-0847-x
[36] Kyrchei, I., Cramer’s Rules of \(\eta \)-(skew-) Hermitian solutions to the quaternion Sylvester-type matrix equations, Adv. Appl. Clifford Algebras, 29, 29-56 (2019) · Zbl 1458.15042 · doi:10.1007/s00006-019-0942-7
[37] Lai, W.M., Rubin, D., KremplE.: Introduction to continuum mechanics. Oxford: Butterworth-Heinemann (2009)
[38] Lai, CC; Tsai, CC, Digital image watermarking using discrete wavelet transform and singular value decomposition, IEEE Trans. Instrumentation Measurement., 59, 11, 3060-3063 (2010) · doi:10.1109/TIM.2010.2066770
[39] Leo, SD; Scolarici, G., Right eigenvalue equation in quaternionic quantum mechanics, J. Phys. A., 33, 2971-2995 (2000) · Zbl 0954.81008 · doi:10.1088/0305-4470/33/15/306
[40] Li, N.; Kindermann, S.; Navasca, C., Some convergence results on the regularized alternating least-squares method for tensor decomposition, Linear Algebra Appl., 438, 2, 796-812 (2013) · Zbl 1261.65041 · doi:10.1016/j.laa.2011.12.002
[41] Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach, in CAMSAP2005: 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 129-132 (2005)
[42] Miao, J., Kou, K.I.: Quaternion higher-order singular value decomposition and its applications in color image processing. arXiv:2101.00364v1, (2021)
[43] Miao, Y.; Qi, L.; Wei, Y., Generalized tensor function via the tensor singular value decomposition based on the t-product, Linear Algebra Appl., 590, 258-303 (2020) · Zbl 1437.15034 · doi:10.1016/j.laa.2019.12.035
[44] Navasca, C., L. De Lathauwer, Kindermann, S.: Swamp reducing technique for tensor decomposition. in 16th European Siganl Processing Conference, Lausanne, 25-29 (2008)
[45] Omberg, L.; Golub, GH; Alter, O., A tensor Higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies, Proc. Natl. Acad. Sci. USA, 104, 47, 18371-18376 (2007) · doi:10.1073/pnas.0709146104
[46] Rodman, L., Topics in quaternion linear algebra (2014), Princeton: Princeton University Press, Princeton · Zbl 1304.15004 · doi:10.23943/princeton/9780691161853.001.0001
[47] Savas, B., Eld \(\acute{e}\) n, L.: Handwritten digit classification using higher order singular value decomposition. Pattern recognit. 40(3), 993-1003 (2007) · Zbl 1119.68188
[48] Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision. in ICML 2005: Proceedings of the 22nd international conference on Machine learning, 792-799 (2005)
[49] Singh, RK; Shaw, DK; Jha, SK, A DWT-SVD based multiple watermarking scheme for image based data security, J. Inform. Opt. Sci., 39, 1, 67-81 (2018)
[50] Song, G., Ng, M.K., Zhang, X.: Robust tensor completion using transformed tensor singular value decomposition. Numer Linear Algebra Appl. 27(3), (2020) (Article ID e2299) · Zbl 07217207
[51] Took, CC; Mandic, DP, Augmented second-order statistics of quaternion random signals, Signal Process., 91, 214-224 (2011) · Zbl 1203.94057 · doi:10.1016/j.sigpro.2010.06.024
[52] Wang, QW; van der Woude, JW; Chang, HX, A system of real quaternion matrix equations with applications, Linear Algebra Appl., 431, 2291-2303 (2009) · Zbl 1180.15019 · doi:10.1016/j.laa.2009.02.010
[53] Wei, YM; Ding, W., Theory and computation of tensors: multi-dimensional arrays (2016), Amsterdam: Academic Press, Amsterdam · Zbl 1380.15004
[54] Yu, S.W., He, Z.H., Qi, T.C., Wang, X.X.: The equivalence canonical form of five quaternion matrices with applications to imaging and Sylvester-type equations. J. Comput. Appl. Math. 393, (2021) (Article ID 113494) · Zbl 1464.15027
[55] Yuan, SF; Tian, Y.; Li, MZ, On Hermitian solutions of the reduced biquaternion matrix equation \((AXB, CXD)=(E, G)\), Linear Multilinear Algebra, 68, 1355-1373 (2020) · Zbl 1464.15026 · doi:10.1080/03081087.2018.1543383
[56] Zeng, C., Ng, M.K.: Decompositions of third-order tensors: HOSVD, T-SVD, and beyond. Numer Linear Algebra Appl. (2020) (Article ID e2290) · Zbl 07217200
[57] Zhang, Y.; Wang, RH, The exact solution of a system of quaternion matrix equations involving \(\eta \)-Hermicity, Appl. Math. Comput., 222, 201-209 (2013) · Zbl 1329.15045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.