×

Spatial diffusion and periodic evolving of domain in an SIS epidemic model. (English) Zbl 1480.92216

Summary: In order to explore the impact of periodically evolving domain on the transmission of disease, we study an SIS reaction-diffusion model with logistic term on a periodically evolving domain. The basic reproduction number \(\mathcal{R}_0\) is given by the next generation infection operator, and relies on the evolving rate of the periodically evolving domain, diffusion coefficient of infected individuals \(d_I\) and size of the space. The monotonicity of \(\mathcal{R}_0\) with respect to \(d_I\), evolving rate \(\rho(t)\) and interval length \(L\) is derived, and asymptotic property of \(\mathcal{R}_0\) if \(d_I\) or \(L\) is small enough or large enough in one-dimensional space is discussed. \( \mathcal{R}_0\) as threshold can be used to characterize whether the disease-free equilibrium is stable or not. Our theoretical results and numerical simulations indicate that small evolving rate, small diffusion of infected individuals and small interval length have positive impact on prevention and control of disease.

MSC:

92D30 Epidemiology
35K57 Reaction-diffusion equations
35B35 Stability in context of PDEs

References:

[1] Allen, L. J.S.; Bolker, B. M.; Lou, Y.; Nevai, A. L., Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21, 1-20 (2008) · Zbl 1146.92028
[2] Beardmore, I.; Beardmore, R., The global structure of a spatial model of infectious disease, Proc. Roy. Soc. Lond. A, 459, 1427-1448 (2003) · Zbl 1064.35069
[3] Cui, R. H.; Lou, Y., A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261, 3305-3343 (2016) · Zbl 1342.92231
[4] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[5] Peng, R.; Liu, S. Q., Global stability of the steady states of an SIS epidemic reaction- diffusion model, Nonliner Anal., 71, 239-247 (2009) · Zbl 1162.92037
[6] Peng, R., Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. I, J. Differential Equations, 247, 1096-1119 (2009) · Zbl 1165.92035
[7] Peng, R.; Zhao, X. Q., A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25, 1451-1471 (2012) · Zbl 1250.35172
[8] Ding, W.; Huang, W. Z.; Kansakar, S., Traveling wave solutions for a diffusive SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18, 1291-1304 (2013) · Zbl 1282.35118
[9] Cui, J. A.; Tao, X.; Zhu, H. P., An SIS infection model incorporating media coverage, Rocky Mountain J. Math., 38, 1323-1334 (2008) · Zbl 1170.92024
[10] Huang, W. Z.; Han, M. A.; Liu, K. Y., Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7, 51-66 (2010) · Zbl 1190.35120
[11] Wu, Y. X.; Zou, X. F., Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261, 4424-4447 (2016) · Zbl 1346.35199
[12] Li, B.; Li, H. C.; Tong, Y. C., Analysis on a diffusive SIS epidemic model with logistic source, Z. Angew. Math. Phys., 68, 1-25 (2017) · Zbl 1375.35255
[13] Chen, X. F.; Friedman, A., A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32, 778-800 (2000) · Zbl 0972.35193
[14] Du, Y. H.; Lin, Z. G., Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42, 377-405 (2010) · Zbl 1219.35373
[15] Guo, J. S.; Wu, C. H., Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28, 1-27 (2015) · Zbl 1316.92066
[16] Wang, M. X.; Zhao, J. F., Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26, 655-672 (2014) · Zbl 1304.35783
[17] Wang, M. X.; Zhao, J. F., A free boundary problem for the predator-prey model with double free boundaries, J. Dynam. Differential Equations, 29, 957-979 (2017) · Zbl 1373.35164
[18] Cao, J. F.; Li, W. T.; Wang, J.; Yang, F. Y., A free boundary problem of a diffusive SIRS model with nonlinear incidence, Z. Angew. Math. Phys., 68, 1-16 (2017) · Zbl 1371.35362
[19] Cao, J. F.; Li, W. T.; Yang, F. Y., Dynamics of a nonlocal SIS epidemic model with free boundary, Discrete Contin. Dyn. Syst. Ser. B, 22, 247-266 (2017) · Zbl 1360.35293
[20] Ge, J.; Kim, K. I.; Lin, Z. G.; Zhu, H. P., A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259, 5486-5509 (2015) · Zbl 1341.35171
[21] Kim, K. I.; Lin, Z. G.; Zhang, Q. Y., An SIR epidemic model with free boundary, Nonlinear Anal. RWA, 14, 1992-2001 (2013) · Zbl 1310.92054
[22] Woolway, R. I.; Kraemer, B. M.; Lenters, J. D., Global lake responses to climate change, Nat. Rev. Earth Environ., 388-403 (2020)
[23] Benitez, M. A., Climate change could affect mosquito-borne diseases in Asia, Lancet, 373, 1070 (2009)
[24] Pu, L. Q.; Lin, Z. G., A diffusive SIS epidemic model in a heterogeneous and periodically evolving environment, Math. Biosci. Eng., 16, 3094-3310 (2019) · Zbl 1501.92186
[25] Adam, B.; Lin, Z. G.; Tarboush, A. K., Asymptotic profile of a mutualistic model on a periodically evolving domain, Int. J. Biomath., 12, 1-23 (2019) · Zbl 1423.35189
[26] Zhang, M. Y.; Lin, Z. G., The diffusive model for Aedes aegypti mosquito on a periodically evolving domain, Discrete Contin. Dyn. Syst. Ser. B, 24, 4703-4720 (2019) · Zbl 1420.35136
[27] Zhu, M.; Xu, Y.; Cao, J. D., The asymptotic profile of a dengue fever model on a periodically evolving domain, Appl. Math. Comput., 362, 1-17 (2019) · Zbl 1433.35177
[28] Crampin, E. J., Reaction Diffusion Patterns on Growing Domains (2000), University of Oxford, (Ph.D. thesis)
[29] Tang, Q. L.; Zhang, L.; Lin, Z. G., Asymptotic profile of species migrating on a growing habitat, Acta Appl. Math., 116, 227-235 (2011) · Zbl 1228.35058
[30] Tang, Q. L.; Lin, Z. G., The asymptotic analysis of an insect dispersal model on a growing domain, J. Math. Anal. Appl., 378, 649-656 (2011) · Zbl 1213.35113
[31] Crampin, E. J.; Gaffney, E. A.; Maini, P. K., Reaction and diffusion on growing domains: Scenarios for robust pattern formation, Bull. Math. Biol., 61, 1093-1120 (1999) · Zbl 1323.92028
[32] Crampin, E. J.; Gaffney, E. A.; Maini, P. K., Mode-doubling and tripling in reaction-diffusion patterns on growing domains: a piecewise linear model, J. Math. Biol., 44, 107-128 (2002) · Zbl 1016.35035
[33] Jiang, D. H.; Wang, Z. C., The diffusive logistic equation on periodically evolving domains, J. Math. Anal. Appl., 458, 93-111 (2018) · Zbl 1460.35204
[34] Sun, S. M.; Pu, L. Q.; Lin, Z. G., Dynamics of the logistic harvesting model with infinite delay on periodically evolving domains, Commun. Math. Biol. Neurosci., 2018 (2018), 19 pages
[35] Waterstraat, N., On bifurcation for semilinear elliptic Dirichlet problems on shrinking domains, Springer Proc. Math. Stat., 119, 273-291 (2015) · Zbl 1327.35031
[36] Du, Y. H.; Peng, R., The periodic logistic equation with spatial and temporal degeneracies, Trans. Amer. Math. Soc., 364, 11, 6039-6070 (2012) · Zbl 1282.35061
[37] Ding, W. W.; Peng, R.; Wei, L., The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment, J. Differential Equations, 263, 2736-2779 (2017) · Zbl 1515.35361
[38] Hess, P., (Periodic-Parabolic Boundary Value Problems and Positivity. Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes in Mathematics, vol. 247 (1991), Longman Sci. Tech.: Longman Sci. Tech. Harlow) · Zbl 0731.35050
[39] Wang, W. D.; Zhao, X. Q., Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11, 1652-1673 (2012) · Zbl 1259.35120
[40] Wang, W. D.; Zhao, X. Q., Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, 20, 699-717 (2008) · Zbl 1157.34041
[41] Peng, R.; Zhao, X. Q., A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species, J. Math. Biol., 72, 755-791 (2016) · Zbl 1339.35336
[42] Pao, C. V., Periodic solutions of parabolic systems with time delays, J. Math. Anal. Appl., 251, 251-263 (2000) · Zbl 0967.35061
[43] Peng, R.; Zhao, X. Q., Effects of diffusion and advection on the principal eigenvalue of a periodic-parabolic problem with applications, Calc. Var. Partial Differential Equations, 54, 1611-1642 (2015) · Zbl 1331.35251
[44] Bai, X. L.; He, X. Q., Asymptotic behavior of the principal eigenvalue for cooperative periodic-parabolic systems and applications, J. Differential Equations, 269, 9868-9903 (2020) · Zbl 1447.35231
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.