×

Human-vector malaria transmission model structured by age, time since infection and waning immunity. (English) Zbl 1480.92212

Summary: Malaria is one of the most common mosquito-borne diseases widespread in tropical and subtropical regions, causing thousands of deaths every year in the world. Few models considering a multiple structure model formulation including (i) the chronological age of human and mosquito populations, (ii) the time since they are infected, and (iii) humans waning immunity (i.e. the progressive loss of protective antibodies after recovery) have been developed. In this paper we formulate an age-structured model containing three structural variables. Using the integrated semigroups theory, we first handle the well-posedness of the model proposed. We also investigate the existence of steady-states. A disease-free equilibrium always exists while the existence of endemic equilibria is discussed. We derive the basic reproduction number \(\mathcal{R}_0\) which expression highlights the effect of the above structural variables on key important epidemiological traits of the human-vector association such as vectorial capacity (i.e., vector daily reproduction rate), humans transmission probability, and survival rate. The expression of \(\mathcal{R}_0\) obtained here generalizes the classical formula of the basic reproduction number. Next, we derive a necessary and sufficient condition that implies the bifurcation of an endemic equilibrium. In the specific case where the age-structure of the human population is neglected, we show that a bifurcation, either backward of forward, may occur at \(\mathcal{R}_0 = 1\) leading to the existence, or not, of multiple endemic equilibrium when \(0 \ll \mathcal{R}_0 < 1\). Finally, the latter theoretical results are enlightened by numerical simulations.

MSC:

92D30 Epidemiology
47D62 Integrated semigroups
34C23 Bifurcation theory for ordinary differential equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] World Malaria Report, 299 (2020)
[2] D.S. Khoury, R. Aogo, et al. Within-host modeling of blood-stage malaria, 285 (1) (2018) 168-193.
[3] Alano, P.; Carter, R., Sexual differentiation in malaria parasites, Annu. Rev. Microbiol., 44, 1, 429-449 (1990)
[4] Frevert, U., Sneaking in through the back entrance: The biology of malaria liver stages, Trends Parasitol., 20, 9, 417-424 (2004)
[5] Bannister, L.; Mitchell, G., The ins, outs and roundabouts of malaria, Trends Parasitol., 19, 5, 209-213 (2003)
[6] Ross, R., The Prevention of Malaria (1911), John Murray: John Murray London
[7] Macdonald, G., The epidemiology and control of malaria, (The Epidemiology and Control of Malaria (1957), Oxford University Press: Oxford University Press London)
[8] Brauer, F.; Castillo-Chavez, C.; Feng, Z., (Mathematical Models in Epidemiology. Mathematical Models in Epidemiology, Texts in Applied Mathematics, vol. 69 (2019), Springer: Springer New York) · Zbl 1433.92001
[9] Cai, L.; Li, X.; Tuncer, N.; Martcheva, M.; Lashari, A. A., Optimal control of a malaria model with asymptomatic class and superinfection, Math. Biosci., 288, 94-108 (2017) · Zbl 1377.92082
[10] Chitnis, N.; Cushing, J. M.; Hyman, J. M., Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67, 1, 24-45 (2006) · Zbl 1107.92047
[11] Chitnis, N.; Hyman, J. M.; Cushing, J. M., Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70, 5, 1272-1296 (2008) · Zbl 1142.92025
[12] Djidjou-Demasse, R.; Abiodun, G. J.; Adeola, A. M.; Botai, J. O., Development and analysis of a malaria transmission mathematical model with seasonal mosquito life-history traits, Stud. Appl. Math., 144, 4, 389-411 (2020) · Zbl 1455.92132
[13] Ducrot, A.; Sirima, S. B.; Somé, B.; Zongo, P., A mathematical model for malaria involving differential susceptibility, exposedness and infectivity of human host, J. Biol. Dyn., 3, 6, 574-598 (2009) · Zbl 1315.92076
[14] Gao, D.; Lou, Y.; Ruan, S., A periodic ross-macdonald model in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 19, 10, 3133-3145 (2014) · Zbl 1327.92059
[15] Harvim, P.; Zhang, H.; Georgescu, P.; Zhang, L., Transmission dynamics and control mechanisms of vector-borne diseases with active and passive movements between urban and satellite cities, Bull. Math. Biol., 81, 11, 4518-4563 (2019) · Zbl 1430.92101
[16] Li, X.-Z.; Gao, S.-S.; Martcheva, M., Modeling and control of malaria when mosquitoes are used as vaccinators, Math. Popul. Stud., 22, 3, 145-171 (2015) · Zbl 1409.92243
[17] Lou, Y.; Zhao, X.-Q., A climate-based malaria transmission model with structured vector population, SIAM J. Appl. Math., 70, 6, 2023-2044 (2010) · Zbl 1221.34224
[18] Prosper, O.; Ruktanonchai, N.; Martcheva, M., Optimal vaccination and bednet maintenance for the control of malaria in a region with naturally acquired immunity, J. Theoret. Biol., 353, 142-156 (2014) · Zbl 1412.92295
[19] Tchoumi, S. Y.; Kamgang, J. C.; Tieudjo, D.; Sallet, G., A basic general model of vector-borne diseases, Commun. Math. Biol. Neurosci., 2018 (2018)
[20] Traoré, B.; Koutou, O.; Sangaré, B., A global mathematical model of malaria transmission dynamics with structured mosquito population and temperature variations, Nonlinear Anal. Real World Appl., 53, Article 103081 pp. (2020), 33 · Zbl 1430.92112
[21] Traoré, B.; Sangaré, B.; Traoré, S., A mathematical model of Malaria transmission with structured vector population and seasonality, J. Appl. Math., Article 6754097 pp. (2017), 15 · Zbl 1437.92081
[22] Xing, Y.; Guo, Z.; Liu, J., Backward bifurcation in a malaria transmission model, J. Biol. Dyn., 14, 1, 368-388 (2020) · Zbl 1447.92492
[23] Coalson, J. E.; Cohee, L. M.; Buchwald, A. G., Simulation models predict that school-age children are responsible for most human-to-mosquito Plasmodium falciparum transmission in southern Malawi, Malar. J., 17, 147, 1-12 (2018)
[24] Felger, I.; Maire, M.; Bretscher, M. T.; Falk, N.; Tiaden, A., The dynamics of natural plasmodium falciparum infections, PLoS One, 7, 9, Article e45542 pp. (2012)
[25] Águas, R.; White, L. J.; Snow, R. W.; Gomes, M. G.M., Prospects for malaria eradication in sub-Saharan Africa, PLoS One, 3, 3, Article e1767 pp. (2008)
[26] Geisse, K. V.; Butler, E. M.; Cordovez, J., Effects of Natural Acquired Immunity in an Age-Structured Malaria ModelTechnical report (2012)
[27] Ma, B.; Li, C.; Warner, J., Structured mathematical models to investigate the interactions between Plasmodium falciparum malaria parasites and host immune response, Math. Biosci., 310, 65-75 (2019) · Zbl 1425.92190
[28] Djidjou-Demasse, R.; Ducrot, A.; Mideo, N.; atan Texier, G., Understanding dynamics of plasmodium falciparum gametocytes production: Insights from an age-structured model (2020), arxiv preprint
[29] Churcher, T. S.; Bousema, T.; Walker, M.; Drakeley, C.; Schneider, P.; Ouédraogo, A. L.; Basáñez, M.-G.; Jha, P., Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection, ELife, 2, Article e00626 pp. (2013)
[30] Bellan, S. E., The importance of age dependent mortality and the extrinsic incubation period in models of mosquito-borne disease transmission and control, PLoS One, 5, 4, Article e10165 pp. (2010)
[31] Styer, L. M.; Carey, J. R.; Wang, J.-L.; Scott, T. W., Mosquitoes do senesce: departure from the paradigm of constant mortality, Am. J. Trop. Med. Hyg., 76, 1, 111-117 (2007)
[32] T. Lefevre, et al. Effect of mosquito age on parasite development and the transmission potential of human malaria, In Prep.
[33] Rock, K. S.; Wood, D. A.; Keeling, M. J., Age-and bite-structured models for vector-borne diseases, Epidemics, 12, 20-29 (2015)
[34] Ohm, J. R.; Baldini, F.; Barreaux, P.; Lefevre, T.; Lynch, P. A.; Suh, E.; Whitehead, S. A.; Thomas, M. B., Rethinking the extrinsic incubation period of malaria parasites, Parasit. Vectors, 11, 1, 1-9 (2018)
[35] Djidjou-Demasse, R.; Ducrot, A.; Fabre, F., Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens, Math. Models Methods Appl. Sci., 27, 2, 385-426 (2017) · Zbl 1360.92077
[36] Kang, H.; Huo, X.; Ruan, S., Nonlinear physiologically structured population models with two internal variables, J. Nonlinear Sci., 30, 6, 2847-2884 (2020) · Zbl 1464.35367
[37] Sinko, J. W.; Streifer, W., A new model for age-size structure of a population, Ecology, 48, 6, 910-918 (1967)
[38] Thieme, H. R., Analysis of age-structured population models with an additional structure, (Mathematical Population Dynamics (New Brunswick, NJ, 1989). Mathematical Population Dynamics (New Brunswick, NJ, 1989), Lecture Notes in Pure and Appl. Math., vol. 131 (1991), Dekker: Dekker New York), 115-126 · Zbl 0748.92009
[39] Webb, G. F., Population models structured by age, size, and spatial position, (Structured Population Models in Biology and Epidemiology. Structured Population Models in Biology and Epidemiology, Lecture Notes in Math., vol. 1936 (2008), Springer: Springer Berlin), 1-49 · Zbl 1138.92029
[40] Burie, J.-B.; Ducrot, A.; Mbengue, A. A., Asymptotic behaviour of an age and infection age structured model for the propagation of fungal diseases in plants, Discrete Contin. Dyn. Syst. Ser. B, 22, 7, 2879-2905 (2017) · Zbl 1368.35267
[41] Dietz, K.; Schenzle, D., Proportionate mixing models for age-dependent infection transmission, J. Math. Biol., 22, 1, 117-120 (1985) · Zbl 0558.92014
[42] Hoppensteadt, F., An age dependent epidemic model, J. Franklin Inst. B, 297, 5, 325-333 (1974) · Zbl 0305.92010
[43] Inaba, H., Endemic threshold results in an age-duration-structured population model for HIV infection, Math. Biosci., 201, 1-2, 15-47 (2006) · Zbl 1094.92053
[44] Inaba, H., Endemic threshold analysis for the Kermack-Mckendrick reinfection model, Josai Math. Monogr., 9, 105-133 (2016)
[45] Kapitanov, G., A double age-structured model of the co-infection of tuberculosis and HIV, Math. Biosci. Eng., 12, 1, 23-40 (2015) · Zbl 1362.92077
[46] Laroche, B.; Perasso, A., Threshold behaviour of a SI epidemiological model with two structuring variables, J. Evol. Equ., 16, 2, 293-315 (2016) · Zbl 1359.35203
[47] Richard, Q.; Alizon, S.; Choisy, M.; Sofonea, M. T.; Djidjou-Demasse, R., Age-structured non-pharmaceutical interventions for optimal control of COVID-19 epidemic, PLoS Comput. Biol., 17, 3, Article e1008776 pp. (2021)
[48] Zhou, Y.; Song, B.; Ma, Z., The global stability analysis for an SIS model with age and infection age structures, (Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory. Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, IMA Vol. Math. Appl., vol. 126 (2002), Springer: Springer New York), 313-335 · Zbl 1022.92040
[49] W. Arendt, Resolvent positive operators, in: Proceedings of the London Mathematical Society. Third Series, Vol. 54, 1987, pp. 321-349. · Zbl 0617.47029
[50] Da Prato, G.; Sinestrari, E., Differential operators with nondense domain, Ann. Sc. Norm. Super. Pisa-Cl. Sci., 14, 2, 285-344 (1987) · Zbl 0652.34069
[51] Kellerman, H.; Hieber, M., Integrated semigroups, J. Funct. Anal., 84, 1, 160-180 (1989) · Zbl 0689.47014
[52] Neubrander, F., Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math., 135, 1, 111-155 (1988) · Zbl 0675.47030
[53] Thieme, H. R., Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations, 3, 6, 1035-1066 (1990) · Zbl 0734.34059
[54] Magal, P.; Ruan, S., (Theory and Applications of Abstract Semilinear Cauchy Problems. Theory and Applications of Abstract Semilinear Cauchy Problems, Applied Mathematical Sciences, vol. 201 (2018), Springer: Springer Cham) · Zbl 1447.34002
[55] Iannelli, M., Mathematical Theory of Age-Structured Population Dynamics (1994), Giardini Editori e stampatori in Pisa
[56] Metz, J. A.; Diekmann, O., (The Dynamics of Physiologically Structured Populations. The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics (1986), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0614.92014
[57] Webb, G. F., Theory of Nonlinear Age-Dependent Population Dynamics (1985), Marcel Dekker: Marcel Dekker New York · Zbl 0555.92014
[58] Inaba, H., Age-Structured Population Dynamics in Demography and Epidemiology, xix+555 (2017), Springer: Springer Singapore · Zbl 1370.92010
[59] Engel, K. J.; Nagel, R., (One-Parameter Semigroups for Linear Evolution Equations. One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194 (2000), Springer-Verlag: Springer-Verlag New York) · Zbl 0952.47036
[60] Diekmann, O.; Heesterbeek, J. A.; Metz, J. A., On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 4, 365-382 (1990) · Zbl 0726.92018
[61] Inaba, H., On a new perspective of the basic reproduction number in heterogeneous environments, J. Math. Biol., 65, 2, 309-348 (2012) · Zbl 1303.92117
[62] Smith, D. L.; Battle, K. E.; Hay, S. I.; Barker, C. M.; Scott, T. W.; McKenzie, F. E., Ross, macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens, PLoS Pathog., 8, 4, Article e1002588 pp. (2012)
[63] Churcher, T. S.; Sinden, R. E.; Edwards, N. J., Probability of transmission of malaria from mosquito to human is regulated by mosquito parasite density in Naïve and vaccinated hosts, PLOS Pathog., 13, 1, 1-18 (2017)
[64] Recensement général de la population et de l’habitation de 2006, Theme 7 : mortalité (2009), http://www.insd.bf/n/contenu/enquetes_recensements/rgph-bf/themes_en_demographie/Theme7-Mortalite.pdf
[65] Pazy, A., (Semigroups of Linear Operators and Applications to Partial Differential Equations. Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44 (1983), Springer-Verlag: Springer-Verlag New York) · Zbl 0516.47023
[66] de Pagter, B., Irreducible compact operators, Math. Z., 192, 1, 149-153 (1986) · Zbl 0607.47033
[67] Meyer-Nieberg, P., (Banach Lattices. Banach Lattices, Universitext (1991), Springer-Verlag: Springer-Verlag Berlin), xvi+395 · Zbl 0743.46015
[68] Yosida, K., (Functional Analysis. Functional Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123 (1980), Springer-Verlag: Springer-Verlag Berlin-New York) · Zbl 0435.46002
[69] Ducrot, A.; Liu, Z.; Magal, P., Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems, J. Math. Anal. Appl., 341, 1, 501-518 (2008) · Zbl 1142.34036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.