×

Projective bundle theorem in MW-motivic cohomology. (English) Zbl 1480.14017

Let \(k\) be an infinite perfect field of characteristic \(\neq 2\). Let \(S\) be a separated smooth \(k\)-scheme, \(X\) a quasi-projective \(k\)-scheme equipped with a smooth \(S\)-scheme structure. Let \(E\) be a vector bundle of rank \(n\) over \(X\). The author computes the MW-motives (as defined by B. Calmès, F. Déglise and J. Fasel) of projective spaces and establishes a version of projective bundle theorem in MW-motives (resp. Chow-Witt rings). It is shown in particular that if \(e(E^{\vee})=0\in H^n(X,\,W(\det(E^{\vee})))\) and \({}_2CH(X)=0\), then \(\widetilde{CH}^*(\mathbb{P}(E))\) can be determined in terms of \(\widetilde{CH}^*(X)\), \(\widetilde{CH}^*(X,\,\det(E^{\vee}))\), \(CH^*(X)\) and the operator \(Sq^2\). As an application, the MW-motives of blow-ups with smooth centers are computed. The paper also discusses the invariance of Chow-Witt cycles of projective bundles under automorphisms of vector bundles.

MSC:

14F42 Motivic cohomology; motivic homotopy theory
11E81 Algebraic theory of quadratic forms; Witt groups and rings

References:

[1] A. Ananyevskiy, On the push-forwards for motivic cohomology theories with invertible stable Hopf element, Manuscripta Math. 150 (2016), 21-44, DOI 10.1007/s00229-015-0799-6, zbl 1337.14022, MR3483167, arxiv 1406.2894 · Zbl 1337.14022 · doi:10.1007/s00229-015-0799-6
[2] J. Ayoub, Les Six Op\'erations de Grothendieck et le Formalisme des Cycle \'Evanescents dans le Monde Motivique, Ast\'erisque 314 (2007), zbl 1146.14001, MR3483167 · Zbl 1146.14001
[3] T. Bachmann, The generalized slices of hermitian K-theory, J. Topol. 10 (2017), no. 4, 1124-1144, DOI 10.1112/topo.12032, zbl 1453.14065, MR3743071, arxiv 1610.01346 · Zbl 1453.14065 · doi:10.1112/topo.12032
[4] B. A. Blander, Local projective model structures on simplicial presheaves, K-Theory 24 (2001), no. 3, 283-301, DOI 10.1023/A:1013302313123, zbl 1073.14517, MR1876801 · Zbl 1073.14517 · doi:10.1023/A:1013302313123
[5] T. Bachmann, B. Calm\`es, F. D\'eglise, J. Fasel, P. A. \O stvaer, Milnor-Witt motives, 2020, arxiv 2004.06634
[6] D. C. Cisinski, F. D\'eglise, Local and stable homological algebra in Grothendieck abelian categories, Homology Homotopy Appl. 11 (2009), no. 1, 219-260, DOI 10.4310/HHA.2009.v11.n1.a11, zbl 1175.18007, MR2529161, arxiv 0712.3296 · Zbl 1175.18007 · doi:10.4310/HHA.2009.v11.n1.a11
[7] D. C. Cisinski, F. D\'eglise, Triangulated Categories of Mixed Motives, Springer Monographs in Mathematics, Springer (2019), DOI 10.1007/978-3-030-33242-6, zbl 07138952, MR3971240 · Zbl 07138952 · doi:10.1007/978-3-030-33242-6
[8] F. D\'eglise, Around the Gysin Triangle I, Regulators, 77-116, Contemp. Math. 571 (2012), DOI 10.1090/conm/571/11323, zbl 1330.14028, MR2953410 · Zbl 1330.14028 · doi:10.1090/conm/571/11323
[9] B. I. Dundas, M. Levine, P. A. \O stvaer, O. R\"ondigs, V. Voevodsky, Motivic Homotopy Theory, Lectures at a Summer School in Nordfjordeid, Norway, August 2002. Universitext, Springer-Verlag, Berlin (2007), zbl 1118.14001, MR2334212 · Zbl 1118.14001
[10] J. Fasel, Groupes de Chow-Witt, M\'em. Soc. Math. Fr. (N.S.) no. 113 (2008), DOI 10.24033/msmf.425, zbl 1190.14001, MR2542148 · Zbl 1190.14001 · doi:10.24033/msmf.425
[11] J. Fasel, The projective bundle theorem for \(I^j\)-cohomology, J. K-Theory 11 (2013), 413-464, DOI 10.1017/is013002015jkt217, zbl 1272.14019, MR3061003 · Zbl 1272.14019 · doi:10.1017/is013002015jkt217
[12] M. Hoyois, S. Kelly, P. A. \O stvaer, The motivic Steenrod algebra in positive characteristic, J. Eur. Math. Soc. 19 (2017), no. 12, 3813-3849, DOI 10.4171/JEMS/754, zbl 1386.14087, MR3730515, arxiv 1305.5690 · Zbl 1386.14087 · doi:10.4171/JEMS/754
[13] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York Inc. (1977), zbl 0367.14001, MR0463157 · Zbl 0367.14001
[14] M. Hovey, Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra 165 (2001), no. 1, 63-127, DOI 10.1016/S0022-4049(00)00172-9, zbl 1008.55006, MR1860878, arxiv math/0004051 · Zbl 1008.55006 · doi:10.1016/S0022-4049(00)00172-9
[15] J. Hornbostel, M. Wendt, Chow-Witt rings of classifying spaces for symplectic and special linear groups, J. Topol. 12 (2019), no. 3, 916-966, DOI 10.1112/topo.12103, zbl 1444.14018, MR4072161, arxiv 1703.05362 · Zbl 1444.14018 · doi:10.1112/topo.12103
[16] J. F. Jardine, Generalized Etale Cohomology Theories, Progress in Mathematics 146, Birkh\"auser Verlag, Basel (1997), zbl 0868.19003, MR1437604 · Zbl 0868.19003
[17] M. Levine, Aspects of enumerative geometry with quadratic forms, Doc. Math. 25 (2020), 2179-2239, https://www.elibm.org/article/10012079, DOI 10.25537/dm.2020v25.2179-2239, zbl 07289291, MR4198841, arxiv 1703.03049 · Zbl 1465.14008 · doi:10.25537/dm.2020v25.2179-2239
[18] J. S. Milne, \'Etale Cohomology, Princeton University Press, Princeton, New Jersey (1980), zbl 0433.14012, MR0559531 · Zbl 0433.14012
[19] F. Morel, An introduction to \(A^1\)-homotopy theory, 357-441, ICTP Trieste Lecture Note Ser. 15 (2003), zbl 1081.14029, MR2175638 · Zbl 1081.14029
[20] F. Morel, \(A^1\)-Algebraic Topology over a Field, Lecture Notes in Math. 2052, Springer, New York (2012), DOI 10.1007/978-3-642-29514-0, zbl 1263.14003, MR2934577 · Zbl 1263.14003 · doi:10.1007/978-3-642-29514-0
[21] F. Morel, V. Voevodsky, \(A^1\)-homotopy theory of schemes, Publications Math\'ematiques de l’I.H.\'E.S. 90 (1999), DOI 10.1007/BF02698831, zbl 0983.14007, MR1813224 · Zbl 0983.14007 · doi:10.1007/BF02698831
[22] C. Mazza, V. Voevodsky, C. Weibel, Lecture Notes on Motivic Cohomology, American Mathematical Society, Providence, RI, for the Clay Mathematics Institute, Cambridge, MA (2006), zbl 1115.14010, MR2242284 · Zbl 1115.14010
[23] A. Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no, 1, 205-236, DOI 10.1090/S0894-0347-96-00174-9, zbl 0864.14008, MR1308405 · Zbl 0864.14008 · doi:10.1090/S0894-0347-96-00174-9
[24] A. Grothendieck, Rev\^etements \'etale et groupe fondamental (SGA 1), Lecture Notes in Math. 224, Springer, Heidelberg (1971), DOI 10.1007/BFb0058656, zbl 0234.14002, arxiv math/0206203 · Zbl 0234.14002 · doi:10.1007/BFb0058656
[25] S. Schwede, B. Shipley, Equivalences of monoidal model categories, Algebr. Geom. Topol. 3 (2003), 287-334, DOI 10.2140/agt.2003.3.287, zbl 1028.55013, MR1997322, math/0209342 · Zbl 1028.55013 · doi:10.2140/agt.2003.3.287
[26] V. Voevodsky, Cancellation theorem, Doc. Math., Extra Volume Suslin (2010), 671-685, https://www.elibm.org/article/10011497, zbl 1202.14022, MR2804268 · Zbl 1202.14022
[27] V. Voevodsky, Homotopy theory of simplicial sheaves in completely decomposable topologies, J. Pure Appl. Algebra 214 (2010), 1384-1398, DOI 10.1016/j.jpaa.2009.11.004, zbl 1194.55020, MR2593670, arxiv 0805.4578 · Zbl 1194.55020 · doi:10.1016/j.jpaa.2009.11.004
[28] N. Yang, Generalized motives and symplectic orientations, th\`ese de doctorat, Universit\'e Grenoble Alpes (2019)
[29] N. Yang, Quaternionic projective bundle theorem and Gysin triangle in MW-motivic cohomology, Manuscripta Math. 164 (2021), no. 1, 39-65, DOI 10.1007/s00229-019-01171-4, zbl 07302642, MR4203683, arxiv 1703.02877 · Zbl 1466.14025 · doi:10.1007/s00229-019-01171-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.