×

Remarks on solitary waves and Cauchy problem for half-wave-Schrödinger equations. (English) Zbl 1479.35260

The authors investigate solitary wave solutions of the Cauchy problem for the half-wave-Schrödinger equation in the plane. First, they show the existence and orbital stability of the ground states. Second, they show that given any speed \(v\), traveling wave solutions exist and converge to the zero wave as the velocity tends to 1. Finally, the authors study the Cauchy problem for initial data in \(L^2_ xH^s_y(\mathbb R^2)\) with \(s > 1/2\), but the critical case \(s = 1/2\) still remains as an interesting open problem.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35B09 Positive solutions to PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
35Q55 NLS equations (nonlinear Schrödinger equations)

References:

[1] J. Bellazzini, V. Georgiev and N. Visciglia, Traveling waves for the quartic focusing Half-wave equation in one space dimension, preprint (2018); arXiv:1804.07075. · Zbl 1392.35279
[2] Bouclet, J. M. and Tzvetkov, N., Strichartz estimates for long range perturbations, Amer. J. Math.129 (2007) 1565-1609. · Zbl 1154.35077
[3] Brezis, H. and Lieb, E. H., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.88 (1983) 486-490. · Zbl 0526.46037
[4] Cai, D., Majda, A. J., McLaughlin, D. W. and Tabak, E. G., Dispersive wave turbulence in one dimension, Phys. D152/153 (2001) 551-572. Advances in nonlinear mathematics and science. · Zbl 1049.76035
[5] Cazenave, T., Semilinear Schrödinger equations, , Vol. 10 (New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003). · Zbl 1055.35003
[6] Cazenave, T. and Lions, P.-L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys.85 (1982) 549-561. · Zbl 0513.35007
[7] Cazenave, T. and Weissler, F., The Cauchy problem for the nonlinear Schrödinger equation in \(H^1\), Manuscripta Math.61 (1988) 477-494. · Zbl 0696.35153
[8] B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, preprint (2011); arXiv:1104.1114. · Zbl 1331.35316
[9] Elgart, A. and Schlein, B., Mean field dynamics of boson stars, Comm. Pure Appl. Math.60 (2007) 500-545. · Zbl 1113.81032
[10] Esfahani, A. and Pastor, A., Sharp constant of an anisotropic Gagliardo-Nirenberg-type inequality and applications, Bull. Braz. Math. Soc. (N.S.)48 (2017) 171-185. · Zbl 1373.35242
[11] Esfahani, A., Pastor, A. and Bona, J., Stability and decay properties of solitary-wave solutions to the generalized BO-ZK equation, Adv. Differential Equations20 (2015) 801-834. · Zbl 1325.35162
[12] Frank, R. L. and Lenzmann, E., Uniqueness of non-linear ground states for fractional Laplacians in \(\mathbb{R} \), Acta Math.210 (2013) 261-318. · Zbl 1307.35315
[13] Frank, R. L., Lenzmann, E. and Silvestre, L., Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math.69 (2016) 1671-1726. · Zbl 1365.35206
[14] Fröhlich, J. and Lenzmann, E., Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math.60 (2007) 1691-1705. · Zbl 1135.35011
[15] Gérard, P., Lenzmann, E., Pocovnicu, O. and Raphaël, P., A two-soliton with transient turbulent regime for the cubic Half-wave equation on the real line, Ann. PDE4 (2018) 166 pp. · Zbl 1397.35062
[16] Ginibre, J. and Velo, G., The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire2 (1985) 309-327. · Zbl 0586.35042
[17] Gonçalves Ribeiro, J. M., Instability of symmetric stationary states for some nonlinear Schrödinger equations with an external magnetic field, Ann. Inst. H. Poincaré Phys. Théor.54 (1991) 403-433. · Zbl 0741.35080
[18] Grafakos, L. and Oh, S., The Kato-Ponce inequality, Comm. Partial Differential Equations39 (2014) 1128-1157. · Zbl 1301.42026
[19] Grillakis, M., Shatah, J. and Strauss, W., Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal.74 (1987) 160-197. · Zbl 0656.35122
[20] Keel, M. and Tao, T., Endpoint Strichartz estimates, Amer. J. Math.120 (1998) 955-980. · Zbl 0922.35028
[21] Kirkpatrick, K., Lenzmann, E. and Staffilani, G., On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys.317 (2013) 563-591. · Zbl 1258.35182
[22] Koch, H., Tataru, D. and Visan, M., Dispersive Equations and Nonlinear Waves, , Vol. 45 (Springer, 2014). · Zbl 1304.35003
[23] Krieger, J., Lenzmann, E. and Raphaël, P., Nondispersive solutions to the \(L^2\)-critical half-wave equation, Arch. Ration. Mech. Anal.209 (2013) 61-129. · Zbl 1288.35433
[24] Lizorkin, P. I., Multipliers of Fourier integrals in the spaces \(L_{p , \theta}\), Tr. Mat. Inst. Steklova89 (1967) 231-248. · Zbl 0159.17402
[25] Majda, A. J., McLaughlin, E. W. and Tabak, E. G., A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci.7 (1997) 9-44. · Zbl 0882.76035
[26] Park, Y. J., Fractional Rellich-Kondrachov compactness theorem, J. Chungcheong Math. Soc.25 (2012) 527-529.
[27] Robert, D., Autour de l’approximation Semi-classique, , Vol. 68 (Birkhäuser, Basel, 1987). · Zbl 0621.35001
[28] Shatah, J. and Strauss, W., Instability of nonlinear bound states, Comm. Math. Phys.100 (1985) 173-190. · Zbl 0603.35007
[29] Tzvetkov, N. and Visciglia, N., Well-posedness and scattering for nonlinear Schrödinger equations on \(\mathbb{R}^d\times\mathbb{T}\) in the energy space, Rev. Mat. Iberoamericana32 (2016) 1163-1188. · Zbl 1365.35164
[30] Xu, H., Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation, Math. Z.286 (2017) 443-489. · Zbl 1367.35159
[31] Yajima, K., Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys.110 (1987) 415-426. · Zbl 0638.35036
[32] Zworski, M., Semiclassical Analysis, , Vol. 138 (American Mathematical Society, 2012). · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.