×

A finite graph is homeomorphic to the Reeb graph of a Morse-Bott function. (English) Zbl 1478.58005

Summary: We prove that a finite graph (allowing loops and multiple edges) is homeomorphic (isomorphic up to vertices of degree two) to the Reeb graph of a Morse-Bott function on a smooth closed \(n\)-manifold, for any dimension \(n\geq 2\). The manifold can be chosen orientable or non-orientable; we estimate the co-rank of its fundamental group (or the genus in the case of surfaces) from below in terms of the cycle rank of the graph. The function can be chosen with any number \(k\geq 3\) of critical values, and in a few special cases with \(k<3\). In the case of surfaces, the function can be chosen, except for a few special cases, as the height function associated with an immersion \(\mathbb{R}^3\).

MSC:

58C05 Real-valued functions on manifolds
58K65 Topological invariants on manifolds
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
05C60 Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.)

Software:

MathOverflow
Full Text: DOI

References:

[1] Biasotti, S.—Giorgi, D.—Spagnuolo, M.—Falcidieno, B.: Reeb Graphs for shape analysis and applications, Theoret. Comput. Sci. 392 (2008), 5-22. · Zbl 1134.68064
[2] Bolsinov, A. V.—Fomenko, A. T.: Integrable Hamiltonian Systems: Geometry, Topology, Classification, CRC Press, USA, 2004. · Zbl 1056.37075
[3] Franks, J.: Nonsingular Smale flows on S^3, Topology 24(3) (1985), 265-282. · Zbl 0609.58039
[4] Fraysseix, H.—de Mendez, O.—Rosenstiehl, P.: Bipolar orientations revisited, Discrete Appl. Math. 56(2-3) (1995), 157-179. · Zbl 0830.05023
[5] Gelbukh, I.: The co-rank of the fundamental group: The direct product, the first Betti number, and the topology of foliations, Math. Slovaca 67(3) (2017), 645-656. · Zbl 1424.14003
[6] Gelbukh, I.: Loops in Reeb graphs of {n}-manifolds, Discrete Comput. Geom. 59(4) (2018), 843-863. · Zbl 1391.05144
[7] Gelbukh, I.: Approximation of metric spaces by Reeb graphs: Cycle rank of a Reeb graph, the co-rank of the fundamental group, and large components of level sets on Riemannian manifolds, Filomat 33(7) (2019), 2031-2049. · Zbl 1513.58005
[8] Gelbukh, I.: Morse-Bott functions with two critical values on a surface, Czech. Math. J. (2021), . · Zbl 07396203 · doi:10.21136/CMJ.2021.0125-20
[9] Kaluba, M.—Marzantowicz, W.—Silva, N.: On representation of the Reeb graph as a sub-complex of manifold, Topol. Meth. Nonl. Anal. 45(1) (2015), 287-305. · Zbl 1376.57037
[10] Kudryavtseva, E. A.: Realization of smooth functions on surfaces as height functions, Sb. Math. 190(3) (1999), 349-405. · Zbl 0941.57026
[11] Leininger, C. J.—Reid, A. W. The Co-rank conjecture for 3-manifold groups, Alg. Geom. Topol. 2 (2002), 37-50. · Zbl 0983.57001
[12] Martínez-Alfaro, J.—Meza-Sarmiento, I. S.—Oliveira, R.: Topological classification of simple Morse Bott functions on surfaces. In: Real and Complex Singularities, Contemporary Mathematics, Vol. 675, AMS, 2016, pp. 165-179. · Zbl 1362.37078
[13] Masumoto, Y.—Saeki, O.: Smooth function on a manifold with given Reeb graph, Kyushu J. of Math. 65(1) (2011), 75-84. · Zbl 1277.58022
[14] Michalak, Ł. P.: Combinatorial modifications of Reeb graphs and the realization problem, Discrete Comput. Geom. (2021), https://link.springer.com/article/10.1007 · Zbl 1465.57099
[15] Michalak, Ł. P.: Realization of a graph as the Reeb graph of a Morse function on a manifold, Topol. Methods Nonlinear Anal. 52(2) (2018), 749-762 · Zbl 1425.58022
[16] Panov, D.: Immersion in ℝ^3 of a Klein bottle with Morse-Bott height function without centers, https://mathoverflow.net/q/343792, (version: 2019-10-13).
[17] Reeb, G: Sur les points singuliers d’une forme de Pfaff complétement intégrable ou d’une fonction numérique, C.R.A.S. Paris 222 (1946), 847-849. · Zbl 0063.06453
[18] Osamu Saeki, O.: Reeb spaces of smooth functions on manifolds, IMRN (2021), . · Zbl 1501.57028 · doi:10.1093/imrn/rnaa301
[19] Sharko, V. V.: About Kronrod-Reeb graph of a function on a manifold, Methods Funct. Anal. Topol. 12(4) (2006), 389-396. · Zbl 1114.57034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.