×

High-order approximation of heteroclinic bifurcations in truncated 2D-normal forms for the generic cases of Hopf-zero and nonresonant double Hopf singularities. (English) Zbl 1478.34067

Authors’ abstract: Based on the nonlinear time transformation method, in this paper we propose a recursive algorithm for arbitrary order approximation of heteroclinic orbits. This approach works fine for a wide class of systems that are perturbations of non-Hamiltonian integrable planar vector fields. Specifically, our method can provide an approximation up to any desired order, both for the locus where the heteroclinic bifurcation occurs in the parameter space and for the orbit in the phase space. We also give proofs that guarantee the existence and uniqueness of the solution. As illustrations, we apply it to the generic Hopf-zero and nonresonant double Hopf singularities which give rise to an intricate bifurcation scenario in the cases where a heteroclinic cycle appears in the corresponding unfolding of normal forms. The obtained high-order approximations are expressed in terms of symbolic nonzero normal form coefficients which improve the existing first-order approximations in the literature. They are also in excellent agreement with numerical continuations. Note that the derived formulas can be practically important in many control engineering applications in which certain constants of the problem may not be known in advance.
Reviewer: Tao Li (Chengdu)

MSC:

34E05 Asymptotic expansions of solutions to ordinary differential equations
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
37M20 Computational methods for bifurcation problems in dynamical systems
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
34C23 Bifurcation theory for ordinary differential equations

Software:

MATCONT; AUTO; HomCont
Full Text: DOI

References:

[1] A. Algaba, K. W. Chung, B. W. Qin, and A. J. Rodríguez-Luis, A nonlinear time transformation method to compute all the coefficients for the homoclinic bifurcation in the quadratic Takens-Bogdanov normal form, Nonlinear Dynam., 97 (2019), pp. 979-990, https://doi.org/10.1007/s11071-019-05025-2. · Zbl 1430.37054
[2] A. Algaba, K. W. Chung, B. W. Qin, and A. J. Rodríguez-Luis, Revisiting the analysis of a codimension-three Takens-Bogdanov bifurcation in planar reversible systems, Nonlinear Dynam., 96 (2019), pp. 2567-2580, https://doi.org/10.1007/s11071-019-04941-7.
[3] A. Algaba, K. W. Chung, B. W. Qin, and A. J. Rodríguez-Luis, Analytical approximation of the canard explosion in a van der Pol system with the nonlinear time transformation method, Phys. D, 406 (2020), p. 132384, https://doi.org/10.1016/j.physd.2020.132384. · Zbl 1482.34138
[4] A. Algaba, K. W. Chung, B. W. Qin, and A. J. Rodríguez-Luis, Computation of all the coefficients for the global connections in the \(\mathbb{Z}_2\)-symmetric Takens-Bogdanov normal forms, Commun. Nonlinear Sci. Numer. Simul., 81 (2020), 105012, https://doi.org/10.1016/j.cnsns.2019.105012. · Zbl 1453.37045
[5] A. Algaba, E. Freire, and E. Gamero, Hypernormal form for the Hopf-zero bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), pp. 1857-1887, https://doi.org/10.1142/S0218127498001583. · Zbl 0996.37062
[6] A. Algaba, E. Freire, E. Gamero, and A. J. Rodríguez-Luis, On a codimension-three unfolding of the interaction of degenerate Hopf and pitchfork bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 09 (1999), pp. 1333-1362, https://doi.org/10.1142/S0218127499000936. · Zbl 0983.37057
[7] A. Algaba, E. Freire, E. Gamero, and A. J. Rodríguez-Luis, A three-parameter study of a degenerate case of the Hopf-pitchfork bifurcation, Nonlinearity, 12 (1999), pp. 1177-1206, https://doi.org/10.1088/0951-7715/12/4/324. · Zbl 0943.34027
[8] A. Algaba, E. Freire, E. Gamero, and A. J. Rodríguez-Luis, A tame degenerate Hopf-pitchfork bifurcation in a modified Van der Pol-Duffing oscillator, Nonlinear Dynam., 22 (2000), pp. 249-269, https://doi.org/10.1023/A:1008328027179. · Zbl 0976.70016
[9] A. Algaba, E. Freire, E. Gamero, and A. J. Rodríguez-Luis, Resonances of periodic orbits in Rössler system in presence of a triple-zero bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), pp. 1997-2008, https://doi.org/10.1142/S0218127407018178. · Zbl 1145.37322
[10] A. Algaba, E. Freire, E. Gamero, and A. J. Rodríguez-Luis, An exact homoclinic orbit and its connection with the Rössler system, Phys. Lett. A, 379 (2015), pp. 1114-1121, https://doi.org/10.1016/j.physleta.2015.02.017. · Zbl 1396.37027
[11] A. Algaba, E. Gamero, C. García, and M. Merino, A degenerate Hopf-saddle-node bifurcation analysis in a family of electronic circuits, Nonlinear Dynam., 48 (2007), pp. 55-76, https://doi.org/10.1007/s11071-006-9051-y. · Zbl 1201.37021
[12] A. Algaba, M. Merino, E. Freire, E. Gamero, and A. J. Rodríguez-Luis, On the Hopf-pitchfork bifurcation in the Chua’s equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), pp. 291-305, https://doi.org/10.1142/S0218127400000190. · Zbl 1090.34545
[13] A. Algaba, M. Merino, B. Qin, and A. J. Rodríguez-Luis, Study of a dynamical system with a strange attractor and invariant tori, Phys. Lett. A, 383 (2019), pp. 1441-1449, https://doi.org/10.1016/j.physleta.2019.01.066. · Zbl 1470.37084
[14] A. Algaba, M. Merino, and A. J. Rodríguez-Luis, Evolution of Arnold’s tongues in a \(\mathbb{Z}_2\)-symmetric electronic circuit, IEICE T. Fund. Electr., E82-A (1999), pp. 1714-1721.
[15] A. Algaba, M. Merino, and A. J. Rodríguez-Luis, Takens-Bogdanov bifurcations of periodic orbits and Arnold’s tongues in a three-dimensional electronic model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), pp. 513-531, https://doi.org/10.1142/S0218127401002286. · Zbl 1090.37543
[16] I. Baldomá, S. Ibán͂ez, and T. M. Seara, Hopf-zero singularities truly unfold chaos, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105162, https://doi.org/10.1016/j.cnsns.2019.105162. · Zbl 1452.37042
[17] I. Baldomá and T. M. Seara, Breakdown of heteroclinic orbits for some analytic unfoldings of the Hopf-zero singularity, J. Nonlinear Sci., 16 (2006), pp. 543-582, https://doi.org/10.1007/s00332-005-0736-z. · Zbl 1130.37380
[18] M. Belhaq, B. Fiedler, and F. Lakrad, Homoclinic connections in strongly self-excited nonlinear oscillators: The Melnikov function and the elliptic Lindstedt-Poincaré method, Nonlinear Dynam., 23 (2000), pp. 67-86, https://doi.org/10.1023/A:1008316010341. · Zbl 0967.70019
[19] M. Belhaq, M. Houssni, E. Freire, and A. J. Rodríguez-Luis, Asymptotics of homoclinic bifurcation in a three-dimensional system, Nonlinear Dynam., 21 (2000), pp. 135-155, https://doi.org/10.1023/A:1008353609572. · Zbl 0960.70019
[20] H. W. Broer and G. Vegter, Subordinate Šil’nikov bifurcations near some singularities of vector fields having low codimension, Ergodic Theory Dynam. Systems, 4 (1984), pp. 509-525, https://doi.org/10.1017/S0143385700002613. · Zbl 0553.58024
[21] C. A. Buzzi, M. A. Teixeira, and J. Yang, Hopf-zero bifurcations of reversible vector fields, Nonlinearity, 14 (2001), pp. 623-638, https://doi.org/10.1088/0951-7715/14/3/310. · Zbl 1115.37326
[22] Y. Y. Cao, K. W. Chung, and J. Xu, A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method, Nonlinear Dynam., 64 (2011), pp. 221-236, https://doi.org/10.1007/s11071-011-9990-9.
[23] A. R. Champneys and V. Kirk, The entwined wiggling of homoclinic curves emerging from saddle-node/Hopf instabilities, Phys. D, 195 (2004), pp. 77-105, https://doi.org/10.1016/j.physd.2004.03.004. · Zbl 1051.37023
[24] G. Chen, J. L. Moiola, and H. O. Wang, Bifurcation control: Theories, methods, and applications, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), pp. 511-548, https://doi.org/10.1142/S0218127400000360. · Zbl 1090.37552
[25] G. Chen, D. Wang, and J. Yang, Unique normal forms for Hopf-zero vector fields, C. R. Math. Acad. Sci. Paris, 336 (2003), pp. 345-348, https://doi.org/10.1016/S1631-073X(03)00043-8. · Zbl 1054.34067
[26] S. H. Chen, Y. Y. Chen, and K. Y. Sze, A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators, J. Sound Vibration, 322 (2009), pp. 381-392, https://doi.org/10.1016/j.jsv.2008.11.015.
[27] Y. Y. Chen and S. H. Chen, Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method, Nonlinear Dynam., 58 (2009), pp. 417-429, https://doi.org/10.1007/s11071-009-9489-9. · Zbl 1183.70045
[28] Y. K. Cheung, S. H. Chen, and S. L. Lau, A modified Lindstedt-Poincaré method for certain strongly nonlinear oscillators, Internat. J. Non-Linear Mech., 26 (1991), pp. 367-378, https://doi.org/10.1016/j.asej.2018.08.007. · Zbl 0755.70021
[29] S. N. Chow, C. Li, and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, UK, 1994, https://doi.org/10.1017/CBO9780511665639. · Zbl 0804.34041
[30] G. M. Constantine and T. H. Savits, A multivariate Faà di Bruno formula with applications, Trans. Amer. Math. Soc., 348 (1996), pp. 503-520, https://doi.org/10.1090/s0002-9947-96-01501-2. · Zbl 0846.05003
[31] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer, and B. Sautois, New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14 (2008), pp. 147-175, https://doi.org/10.1080/13873950701742754. · Zbl 1158.34302
[32] E. J. Doedel, A. R. Champneys, F. Dercole, T. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, R. Paffenroth, B. Sandstede, X. Wang, and C. Zhang, AUTO-\(07\) P: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont), Technical report, Concordia University, Montreal, QC, Canada, 2012.
[33] F. Drubi, S. Ibán͂ez, and J. A. Rodríguez, Hopf-pitchfork singularities in coupled systems, Phys. D, 240 (2011), pp. 825-840, https://doi.org/10.1016/j.physd.2010.12.013. · Zbl 1220.37042
[34] F. Dumortier and S. Ibán͂ez, Singularities of vector fields on \(\mathbb{R}^3\), Nonlinearity, 11 (1998), pp. 1037-1047, https://doi.org/10.1088/0951-7715/11/4/015. · Zbl 0907.58051
[35] F. Dumortier, S. Ibán͂ez, H. Kokubu, and C. Simó, About the unfolding of a Hopf-zero singularity, Discrete Contin. Dyn. Syst., 33 (2013), pp. 4435-4471, https://doi.org/10.3934/dcds.2013.33.4435. · Zbl 1283.34039
[36] E. Freire, E. Gamero, A. J. Rodríguez-Luis, and A. Algaba, A note on the triple-zero linear degeneracy: Normal forms, dynamical and bifurcation behaviors of an unfolding, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), pp. 2799-2820, https://doi.org/10.1142/S0218127402006175. · Zbl 1043.37042
[37] P. Gaspard, Local birth of homoclinic chaos, Phys. D, 62 (1993), pp. 94-122, https://doi.org/10.1016/0167-2789(93)90276-7. · Zbl 0786.34051
[38] M. Gazor and F. Mokhtari, Volume-preserving normal forms of Hopf-zero singularity, Nonlinearity, 26 (2013), pp. 2809-2832, https://doi.org/10.1088/0951-7715/26/10/2809. · Zbl 1283.34038
[39] M. Gazor and F. Mokhtari, Normal forms of Hopf-zero singularity, Nonlinearity, 28 (2014), pp. 311-330, https://doi.org/10.1088/0951-7715/28/2/311. · Zbl 1315.34045
[40] M. Gazor, F. Mokhtari, and J. A. Sanders, Normal forms for Hopf-zero singularities with nonconservative nonlinear part, J. Differential Equations, 254 (2013), pp. 1571-1581, https://doi.org/10.1016/j.jde.2012.11.004. · Zbl 1266.34066
[41] M. Gazor and N. Sadri, Bifurcation control and universal unfolding for Hopf-zero singularities with leading solenoidal terms, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 870-903, https://doi.org/10.1137/141000403. · Zbl 1352.34053
[42] M. Gazor and N. Sadri, Bifurcation controller designs for the generalized cusp plants of Bogdanov-Takens singularity with an application to ship control, SIAM J. Control Optim., 57 (2019), pp. 2122-2151, https://doi.org/10.1137/18M1210769. · Zbl 1423.34080
[43] J. M. Ginoux and J. Llibre, Zero-Hopf bifurcation in the Volterra-Gause system of predator-prey type, Math. Methods Appl. Sci., 40 (2017), pp. 7858-7866, https://doi.org/10.1002/mma.4569. · Zbl 1387.34060
[44] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983, https://doi.org/10.1007/978-1-4612-1140-2. · Zbl 0515.34001
[45] B. Hamzi, W. Kang, and J.-P. Barbot, Analysis and control of Hopf bifurcations, SIAM J. Control Optim., 42 (2004), pp. 2200-2220, https://doi.org/10.1137/S0363012900372714. · Zbl 1069.93014
[46] J. H. He, Modified Lindstedt-Poincaré methods for some strongly non-linear oscillations. I: Expansion of a constant, Internat. J. Non-Linear Mech., 37 (2002), pp. 309-314, https://doi.org/10.1016/S0020-7462(00)00116-5. · Zbl 1116.34320
[47] J. H. He, Modified Lindstedt-Poincaré methods for some strongly non-linear oscillations. II: A new transformation, Internat. J. Non-Linear Mech., 37 (2002), pp. 315-320, https://doi.org/10.1016/S0020-7462(00)00117-7. · Zbl 1116.34321
[48] A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, in Handbook of Dynamical Systems, Vol. 3, H. W. Broer, B. Hasselblatt, and F. Takens, eds., Elsevier Science, New York, 2010, pp. 379-524, https://doi.org/10.1016/S1874-575X(10)00316-4. · Zbl 1243.37024
[49] G. Iooss and W. F. Langford, Conjectures on the routes to turbulence via bifurcation, in Nonlinear Dynamics, R. H. G. Helleman, ed., Annals N. Y. Acad. Sci. 357, New York Academy of Sciences, New York, 1980, pp. 489-505, https://doi.org/10.1111/j.1749-6632.1980.tb29712.x.
[50] W. Kang, Bifurcation and normal form of nonlinear control systems, Part I, SIAM J. Control Optim., 36 (1998), pp. 193-212, https://doi.org/10.1137/S0363012995290288. · Zbl 0965.93022
[51] J. P. Keener, Infinite period bifurcation and global bifurcation branches, SIAM J. Appl. Math., 41 (1981), pp. 127-144, https://doi.org/10.1137/0141010. · Zbl 0523.34046
[52] P. M. Kitanov, W. F. Langford, and A. R. Willms, Double Hopf bifurcation with Huygens symmetry, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 126-174, https://doi.org/10.1137/110839461. · Zbl 1284.34051
[53] B. Krauskopf and C. Rousseau, Codimension-three unfoldings of reflectionally symmetric planar vector fields, Nonlinearity, 10 (1997), pp. 1115-1150, https://doi.org/10.1088/0951-7715/10/5/007. · Zbl 0904.34025
[54] A. J. Krener, W. Kang, and D. E. Chang, Control bifurcations, IEEE Trans. Automat. Control, 49 (2004), pp. 1231-1246, https://doi.org/10.1109/TAC.2004.832199. · Zbl 1365.34072
[55] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 2004, https://doi.org/10.1007/978-1-4757-3978-7. · Zbl 1082.37002
[56] J. S. W. Lamb, M. A. Teixeira, and K. N. Webster, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in \(\mathbb{R}^3\), J. Differential Equations, 219 (2005), pp. 78-115, https://doi.org/10.1016/j.jde.2005.02.019. · Zbl 1090.34033
[57] J. Li, Y. Liu, and Z. Wei, Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system, Adv. Difference Equ., 2018 (2018), 141, https://doi.org/10.1186/s13662-018-1597-8. · Zbl 1446.94210
[58] F. Mokhtari, On the representations and \(\mathbb{Z}_2\)-equivariant normal form for solenoidal Hopf-zero singularities, Phys. D, 386-387 (2019), pp. 14-22, https://doi.org/10.1016/j.physd.2018.08.003. · Zbl 1415.37070
[59] L. M. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 2001, https://doi.org/10.1007/978-1-4613-0003-8. · Zbl 0973.34001
[60] B. W. Qin, K. W. Chung, A. Algaba, and A. J. Rodríguez-Luis, Analytical approximation of cuspidal loops using a nonlinear time transformation method, Appl. Math. Comput., 373 (2020), 125042, https://doi.org/10.1016/j.amc.2020.125042. · Zbl 1433.37019
[61] B. W. Qin, K. W. Chung, A. Algaba, and A. J. Rodríguez-Luis, High-order analysis of canard explosion in the Brusselator equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 2050078, https://doi.org/10.1142/S0218127420500789. · Zbl 1447.34023
[62] B. W. Qin, K. W. Chung, A. Algaba, and A. J. Rodríguez-Luis, High-order analysis of global bifurcations in a codimension-three Takens-Bogdanov singularity in reversible systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 2050017, https://doi.org/10.1142/S0218127420500170. · Zbl 1436.34035
[63] B. W. Qin, K. W. Chung, A. Algaba, and A. J. Rodríguez-Luis, High-order study of the canard explosion in an aircraft ground dynamics model, Nonlinear Dynam., 100 (2020), pp. 1079-1090, https://doi.org/10.1007/s11071-020-05575-w. · Zbl 1459.34133
[64] B. W. Qin, K. W. Chung, A. J. Rodríguez-Luis, and M. Belhaq, Homoclinic-doubling and homoclinic-gluing bifurcations in the Takens-Bogdanov normal form with \(D_4\) symmetry, Chaos, 28 (2018), 093107, https://doi.org/10.1063/1.5030692. · Zbl 1397.37022
[65] G. Revel, D. M. Alonso, and J. L. Moiola, A degenerate 2:3 resonant Hopf-Hopf bifurcation as organizing center of the dynamics: Numerical semiglobal results, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 1130-1164, https://doi.org/10.1137/140968197. · Zbl 1336.34059
[66] K. N. Webster and J. N. Elgin, Asymptotic analysis of the Michelson system, Nonlinearity, 16 (2003), pp. 2149-2162, https://doi.org/10.1088/0951-7715/16/6/316. · Zbl 1055.34102
[67] G. Wen, H. Xu, and J. Xie, Controlling Hopf-Hopf interaction bifurcations of a two-degree-of-freedom self-excited system with dry friction, Nonlinear Dynam., 64 (2011), pp. 49-57, https://doi.org/10.1007/s11071-010-9844-x. · Zbl 1355.70010
[68] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 2003, https://doi.org/10.1007/b97481. · Zbl 1027.37002
[69] J. Xie and W. Ding, Hopf-Hopf bifurcation and invariant torus \({{T}}^2\) of a vibro-impact system, Internat. J. Non-Linear Mech., 40 (2005), pp. 531-543, https://doi.org/10.1016/j.ijnonlinmec.2004.07.015. · Zbl 1349.70050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.