×

Concentration phenomenon in the critical exponent problems on hyperbolic space. (English) Zbl 1477.35003

Summary: This article deals with the study of the following critical exponent problem \[ (P_{\lambda, \mu}) \begin{cases} -\Delta_{\mathbb{H}^n} u+ (\mu g(x)-\lambda)u=u^{p-1} \text{ in } \mathbb{H}^n, \\ u>0 \text{ in } \mathbb{H}^n, \quad u\in H^1 (\mathbb{H}^n) \end{cases} \] where \(\mathbb{H}^n\) is the \(n\)-dimensional hyperbolic space, \(n \geq 4, p=2n/(n-2)\) is the critical exponent, \(\lambda, \mu >0\) are real parameters, \(\Delta_{\mathbb{H}^n}\) denotes the Laplace-Beltrami operator on \(\mathbb{H}^n\) and \(g(x)\) is a real valued potential function on \(\mathbb{H}^n\). Using variational methods, we establish the existence of positive ground state solution to \((P_{\lambda,\mu})\) and study the convergence of these solutions when \(\mu\) approaches \(+\infty\).

MSC:

35A15 Variational methods applied to PDEs
35B33 Critical exponents in context of PDEs
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)
35J61 Semilinear elliptic equations
Full Text: DOI

References:

[1] Talenti, G., Best constant in Sobolev inequality, Ann Mat Pura Appl, 110, 353-372 (1976) · Zbl 0353.46018
[2] Brézis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical sobolev exponents, Commun Pure Appl Math, 36, 4, 437-477 (1983) · Zbl 0541.35029
[3] Cerami, G.; Fortunato, D.; Struwe, M., Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann de l’Institut Henri Poincare (C) Non Linear Anal, 1, 5, 341-350 (1984) · Zbl 0568.35039
[4] Cerami, G.; Solimini, S.; Struwe, M., Some existence results for superlinear elliptic boundary value problems involving critical exponents, J Funct Anal, 69, 3, 289-306 (1986) · Zbl 0614.35035
[5] Clapp, M.; Weth, T., Multiple solutions for the Brezis-Nirenberg problem, Adv Differ Equ, 10, 4, 463-480 (2005) · Zbl 1284.35151
[6] Schechter, M.; Zou, W., On the Brézis-Nirenberg problem, Arch Rational Mech Anal, 197, 337-356 (2010) · Zbl 1200.35137
[7] Devillanova, G.; Solimini, S., Concentration estimates and multiple solutions to elliptic problems at critical growth, Adv Differ Equ, 7, 10, 1257-1280 (2002) · Zbl 1208.35048
[8] Clapp, M.; Ding, Y., Positive solutions of a Schrödinger equation with critical nonlinearity, Z Angew Math Phys, 55, 592-605 (2004) · Zbl 1060.35130
[9] Bartsch, T.; Wang, ZQ., Multiple positive solutions for a nonlinear Schödinger equation, Z Angrew Math Phys (ZAMP), 51, 366-384 (2000) · Zbl 0972.35145
[10] Stapelkamp, S., The Brézis-Nirenberg problem on \(####\). Existence and uniqueness of solutions. Elliptic and parabolic problems (Rolduc/Gaeta, 2001), River Edge, NJ: World Scientific, River Edge, NJ
[11] Mancini, G.; Sandeep, K., On a semilinear elliptic equation in \(####\), Ann Sci Norm Super Pisa Cl Sci, 7, 635-671 (2008) · Zbl 1179.35127
[12] Ganguly, D.; Sandeep, K., Sign changing solutions of the Brezis-Nirenberg problem in the hyperbolic space, Calc Var Partial Differ Equ, 50, 1-2, 69-91 (2014) · Zbl 1295.35203
[13] Bhakta, M.; Sandeep, K., Poincaré-Sobolev equations in the hyperbolic space, Calc Var Partial Differ Equ, 44, 1, 247-269 (2012) · Zbl 1244.35034
[14] Ganguly, D.; Sandeep, K., Nondegeneracy of positive solutions of semilinear elliptic problems in the hyperbolic space, Commun Contemp Math, 17, 1 (2015) · Zbl 1314.58013
[15] Ganguly, D.; Karmakar, D., Existence results for semilinear problems in the two-dimensional hyperbolic space involving critical growth, Proc R Soc Edinb A, 147, 1, 141-176 (2017) · Zbl 1379.35133
[16] Takahashi, F., Concentration phenomena in the conformal Brezis-Nirenberg problem, Adv Stud Pure Math, 42, 2, 767-783 (2007) · Zbl 1133.35371
[17] Ratcliffe, JG., Foundations of hyperbolic manifolds (1994), New York: Springer-Verlag, New York · Zbl 0809.51001
[18] Chavel, I., Eigenvalues in Riemannian geometry (1984), Orlando, FL: Academic Press, Orlando, FL · Zbl 0551.53001
[19] Hebey, E., Sobolev spaces on Riemannian manifolds (1996), New York: Springer-Verlag, New York · Zbl 0866.58068
[20] Szulkin, A., The method of Nehari manifold revisited, 89-102 (2011), Kyoto: Research Institute for Mathematical Sciences, Kyoto University, Kyoto
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.