×

The scaled boundary finite element method based on the hybrid quadtree mesh for solving transient heat conduction problems. (English) Zbl 1476.80014

Summary: In this paper, a hybrid quadtree mesh is utilized to solve two-dimensional transient heat conduction problems with cracks or inclusions. The current approach developed based on the scaled boundary finite element method (SBFEM) is able to alleviate the hanging node issues typically encountered in the conventional finite element method when using quadtree mesh. Moreover, the present method does not require fundamental solutions, unlike the boundary element method. The formulas of temperature and temperature gradient fields are derived systematically for the insulated crack and the inclusions of different materials with temperature and heat flux boundary conditions. Several examples are presented to demonstrate the validity and stability of SBFEM when solving models with complex geometry and cracks or inclusions.

MSC:

80M15 Boundary element methods applied to problems in thermodynamics and heat transfer
65M38 Boundary element methods for initial value and initial-boundary value problems involving PDEs
80A19 Diffusive and convective heat and mass transfer, heat flow
Full Text: DOI

References:

[1] Guo, H.; Ooi, E. T.; Saputra, A. A.; Yang, Z.; Natarajan, S.; Ooi, E. H.; Song, C., A quadtree-polygon-based scaled boundary finite element method for image-based mesoscale fracture modelling in concrete, Eng. Fract. Mech., 211, 420-441 (2019)
[2] Guo, S. L.; Wang, B. L., Thermal shock fracture of a cylinder with a penny-shaped crack based on hyperbolic heat conduction, Int. J. Heat Mass Transf., 91, 235-245 (2015)
[3] Sutradhar, A.; Paulino, G. H.; Gray, L. J., Transient heat conduction in homogeneous and non-homogeneous materials by the Laplace transform Galerkin boundary element method, Int. J. Therm. Sci., 26, 2, 119-132 (2002) · Zbl 0995.80010
[4] Nishimura, N., Fast multipole accelerated boundary integral equation methods, Appl. Mech. Rev., 55, 4, 299-324 (2002)
[5] Galvis, A. F.; Sollero, P., 2D analysis of intergranular dynamic crack propagation in polycrystalline materials a multiscale cohesive zone model and dual reciprocity boundary elements, Comput. Struct., 164, 1-14 (2016)
[6] Yu, B.; Zhou, H. L.; Chen, H. L.; Tong, Y., Precise time-domain expanding dual reciprocity boundary element method for solving transient heat conduction problems, Int. J. Heat Mass Transf., 91, 110-118 (2015)
[7] Yu, B.; Xu, C.; Yao, W. A.; Meng, Z., Estimation of boundary condition on the furnace inner wall based on precise integration BEM without iteration, Int. J. Heat Mass Transf., 122, 823-845 (2018)
[8] Yao, W. A.; Yu, B.; Gao, X. W.; Gao, Q., A precise integration boundary element method for solving transient heat conduction problems, Int. J. Heat Mass Transf., 78, 883-891 (2014)
[9] Gao, X. W.; Zheng, B. J.; Yang, K.; Zhang, C., Radial integration BEM for dynamic coupled thermoelastic analysis under thermal shock loading, Comput. Struct., 158, 140-147 (2015)
[10] Yu, B.; Zhou, H. L.; Yan, J.; Meng, Z., A differential transformation boundary element method for solving transient heat conduction problems in functionally graded materials, Numer Heat Tranf. A-Appl., 70, 293-309 (2016)
[11] Gao, X. W.; Yuan, Z. C.; Peng, H. F.; Cui, M.; Yang, K., Isoparametric closure elements in boundary element method, Comput. Struct., 168, 1-15 (2016)
[12] Zhou, F. L.; Li, Y.; Zhang, J. M.; Huang, C.; Lu, C. J., A time step amplification method in boundary face method for transient heat conduction, Int. J. Heat Mass Transf., 84, 671-679 (2015)
[13] Fu, Z. J.; Shi, J. H.; Chen, W.; Yang, L. W., Three-dimensional transient heat conduction analysis by boundary knot method, Math. Comput. Simul., 165, 306-317 (2019) · Zbl 1540.80003
[14] Simpson, R. N.; Bordas, S. P.A.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech. Eng., 209, 87-100 (2012) · Zbl 1243.74193
[15] Dölz, J.; Harbrecht, H.; Kurz, S.; Schöps, S.; Wolf, F., A fast isogeometric BEM for the three dimensional Laplace-and Helmholtz problems, Comput. Methods Appl. Mech. Eng., 330, 83-101 (2018) · Zbl 1439.65208
[16] Johnston, P. R.; Elliott, D., A sinh transformation for evaluating nearly singular boundary element integrals, Int. J. Numer. Methods Eng., 62, 4, 564-578 (2005) · Zbl 1119.65318
[17] Gao, Q.; Cui, H. C., Efficient and accurate method for 2D periodic structures based on the physical features of the transient heat conduction, Int. J. Therm. Sci., 127, 213-231 (2018)
[18] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons: John Wiley & Sons New York · Zbl 1378.65009
[19] Shephard, M. S.; Georges, M. K., Automatic three‐dimensional mesh generation by the finite octree technique, Int. J. Numer. Methods Eng., 32, 4, 709-749 (1991) · Zbl 0755.65116
[20] Legrain, G.; Allais, R.; Cartraud, P., On the use of the extended finite element method with quadtree/octree meshes, Int. J. Numer. Methods Eng., 86, 6, 717-743 (2011) · Zbl 1235.74296
[21] Ooi, E. T.; Man, H.; Natarajan, S.; Song, C., Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modelling, Eng. Fract. Mech., 144, 101-117 (2015)
[22] Song, C., The scaled boundary finite element method in structural dynamics, Int. J. Numer. Methods Eng., 77, 8, 1139-1171 (2009) · Zbl 1156.74387
[23] Song, C., The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation (2018), John Wiley & Sons
[24] Ooi, E. T.; Natarajan, S.; Song, C.; Ooi, E. H., Dynamic fracture simulations using the scaled boundary finite element method on hybrid polygon-quadtree meshes, Int. J. Impact Eng., 90, 154-164 (2016)
[25] Song, C.; Wolf, J. P., The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics, Comput. Meth. Appl. Mech. Eng., 147, 3-4, 329-355 (1997) · Zbl 0897.73069
[26] Deeks, A. J.; Cheng, L., Potential flow around obstacles using the scaled boundary finite‐element method, Int. J. Numer. Methods Fluids., 41, 7, 721-741 (2003) · Zbl 1107.76348
[27] Lehmann, L.; Langer, S.; Clasen, D., Scaled boundary finite element method for acoustics, J, Comput. Acoust., 14, 4, 489-506 (2006) · Zbl 1198.76080
[28] Liu, J.; Lin, G.; Wang, F. M.; Li, J. B., The scaled boundary finite element method applied to electromagnetic field problems, (Proceedings of the IOP Conference Series: Materials Science and Engineering, 10 (2010)), Article 012245 pp.
[29] Liu, J.; Lin, G.; Li, J.; Zhong, H., Analysis of quadruple corner-cut ridged square waveguide using a scaled boundary finite element method, Appl. Math. Model., 36, 10, 4797-4809 (2012)
[30] Chen, D.; Birk, C.; Song, C.; Du, C., A high‐order approach for modelling transient wave propagation problems using the scaled boundary finite element method, Int. J. Numer. Methods Eng., 97, 13, 937-959 (2014) · Zbl 1352.65335
[31] Bazyar, M. H.; Talebi, A., Transient seepage analysis in zoned anisotropic soils based on the scaled boundary finite‐element method, Int. J. Numer. Anal. Methods Geomech., 39, 1, 1-22 (2015)
[32] Yang, Z. J.; Wang, X. F.; Yin, D. S.; Zhang, C., A non-matching finite element-scaled boundary finite element coupled method for linear elastic crack propagation modelling, Comput. Struct., 153, 126-136 (2015)
[33] Lin, G.; Lu, S.; Liu, J., Duality system-based derivation of the modified scaled boundary finite element method in the time domain and its application to anisotropic soil, Appl. Math. Model., 40, 9-10, 5230-5255 (2016) · Zbl 1465.74122
[34] Xing, W. W.; Song, C.; Tin-Loi, F., A scaled boundary finite element based node-to-node scheme for 2D frictional contact problems, Comput. Methods Appl. Mech. Eng., 333, 114-146 (2018) · Zbl 1440.74241
[35] Chasapi, M.; Klinkel, S., A scaled boundary isogeometric formulation for the elasto-plastic analysis of solids in boundary representation, Comput. Methods Appl. Mech. Eng., 333, 475-496 (2018) · Zbl 1440.74078
[36] Zhang, Z. H.; Dissanayake, D.; Saputra, A.; Wu, D.; Song, C. M., Three-dimensional damage analysis by the scaled boundary finite element method, Comput. Struct., 206, 1-17 (2018)
[37] Zhang, J. Q.; Song, C., A polytree based coupling method for non-matching meshes in 3D, Comput. Methods Appl. Mech. Eng., 349, 743-773 (2019) · Zbl 1441.74292
[38] Liu, L.; Zhang, J. Q.; Song, C.; Birk, C.; Gao, W., An automatic approach for the acoustic analysis of three-dimensional bounded and unbounded domains by scaled boundary finite element method, Int. J. Mech. Sci., 151, 563-581 (2019)
[39] He, Y. Q.; Yang, H. T.; Deeks, A. J., An element-free Galerkin scaled boundary method for steady-state heat transfer problems, Numer Heat Tranf. B-Fundam., 64, 3, 199-217 (2013)
[40] Bazyar, M. H.; Talebi, A., Scaled boundary finite-element method for solving non-homogeneous anisotropic heat conduction problems, Appl. Math. Model., 39, 23-24, 7583-7599 (2015) · Zbl 1443.80001
[41] Lu, S.; Liu, J.; Lin, G.; Zhang, P. C., Modified scaled boundary finite element analysis of 3D steady-state heat conduction in anisotropic layered media, Int. J. Heat Mass Transf., 108, B, 2462-2471 (2017)
[42] Lin, G.; Li, P.; Liu, J.; Zhang, P. C., Transient heat conduction analysis using the NURBS-enhanced scaled boundary finite element method and modified precise integration method, Acta Mech. Solida Sin., 30, 5, 445-464 (2017)
[43] He, Y. Q.; Dong, X. C.; Yang, H. T., A new adaptive algorithm for phase change heat transfer problems based on quadtree SBFEM and smoothed effective heat capacity method, Numer Heat Tranf. B-Fundam., 75, 2, 111-126 (2019)
[44] Li, P.; Liu, J.; Lin, G.; Zhang, P. C.; Yang, G. T., A NURBS-based scaled boundary finite element method for the analysis of heat conduction problems with heat fluxes and temperatures on side-faces, Int. J. Heat Mass Transf., 113, 764-779 (2017)
[45] Wolf, J. P., The Scaled Boundary Finite Element Method (2003), John Wiley & Sons, Hoboken American
[46] Bobaru, F.; Duangpanya, M., A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities, J. Comput. Phys., 231, 7, 2764-2785 (2012) · Zbl 1253.80002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.